Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Definitions of Acids and Bases

23 DEFINITION OF ACIDS AND BASES The classical concepts of acids and bases, as outlined in Sections I.15-I.22 are sufficient to explain most of the acid-base phenomena encountered in qualitative inorganic analysis carried out in aqueous solutions. Nevertheless this theory has limitations, which become most apparent if acid-base phenomena in non-aqueous solutions have to be interpreted. In the classical acid-base theory two ions, the hydrogen ion (that is the proton) and the hydroxyl ion are given special roles. It was, however, [Pg.61]

Such considerations led to a more general definition of acids and bases, which was proposed independently by J. N. Brpnsted and T. M. Lowry in 1923. They defined acid as any substance (in either the molecular or the ionic state) which donates protons (H+), and a base as any substance (molecular or ionic) which accepts protons. Denoting the acid by A and the base by B, the acid-base equilibrium can be expressed as [Pg.62]

Such an equilibrium system is termed a conjugate (or corresponding) acid-base system. A and B are termed a conjugate acid-base pair. It is important to realize that the symbol H+ in this definition represents the bare proton (unsolvated hydrogen ion), and hence the new definition is in no way connected to any solvent. The equation expresses a hypothetical scheme for defining the acid and base - it can be regarded as a half reaction which takes place only if the proton, released by the acid, is taken up by another base. [Pg.62]

From these examples it can be seen that according to the Brensted-Lowry theory, acids can be  [Pg.63]

According to this theory, bases are substances which are able to accept protons (and not, as in the classical acid-base theory, those, which produce hydroxyl or any other ion). The following are included  [Pg.63]


We have seen that a base can be defined as combining with a proton and, therefore, requires at least one lone pair of electrons. A more general definition of acids and bases, due to G. N. Lewis, describes a base as any species (atom, ion or molecule) which can donate an electron pair, and an acid as any species which can accept an electron pair— more simply, a base is an electron-pair donor, an acid an electron-pair acceptor. Some examples of Lewis acids and bases are ... [Pg.91]

This IS a very useful relationship You should practice writing equations according to the Brpnsted-Lowry definitions of acids and bases and familiarize yourself with Table 1 7 which gives the s of various Br0n sted acids... [Pg.50]

The Lewis definitions of acids and bases provide for a more general view of acid-base reactions than either the Arrhenius or Br0nsted-Lowry pic ture A Lewis acid is an electron pair acceptor A Lewis base is an electron pair donor The Lewis approach incorporates the Br0nsted-Lowry approach as a subcategory m which the atom that accepts the electron pair m the Lewis acid is a proton... [Pg.50]

A useful definition of acids and bases is that independently introduced by Johannes Bronsted (1879-1947) and Thomas Lowry (1874-1936) in 1923. In the Bronsted-Lowry definition, acids are proton donors, and bases are proton acceptors. Note that these definitions are interrelated. Defining a base as a proton acceptor means an acid must be available to provide the proton. For example, in reaction 6.7 acetic acid, CH3COOH, donates a proton to ammonia, NH3, which serves as the base. [Pg.140]

The Lewis definition of acids and bases is broader and more encompassing than the Bronsted-Lowry definition because it s not limited to substances that donate or accept just protons. A Lewis acid is a substance that accepts an electron pair, and a Lewis base is a substance that donates an electron pair. The donated electron pair is shared between the acid and the base in a covalent bond. [Pg.57]

We will consider more general definitions of acids and bases in Chapter 13 (Bransted-Lowry) and Chapter 15 (Lewis). [Pg.81]

In 1923. Lewis published a classic book (later reprinted by Dover Publications) titled Valence and the Structure of Atoms and Molecules. Here, in Lewis s characteristically lucid style, we find many of the basic principles of covalent bonding discussed in this chapter. Included are electron-dot structures, the octet rule, and the concept of electronegativity. Here too is the Lewis definition of acids and bases (Chapter 15). That same year, Lewis published with Merle Randall a text called Thermodynamics and the Free Energy of Chemical Substances. Today, a revised edition of that text is still used in graduate courses in chemistry. [Pg.174]

Another definition of acids and bases is due to G. N. Lewis (1938). From the experimental point of view Lewis regarded all substances which exhibit typical acid-base properties (neutralisation, replacement, effect on indicators, catalysis), irrespective of their chemical nature and mode of action, as acids or bases. He related the properties of acids to the acceptance of electron pairs, and bases as donors of electron pairs, to form covalent bonds regardless of whether protons are involved. On the experimental side Lewis definition brings together a wide range of qualitative phenomena, e.g. solutions of BF3, BC13,... [Pg.22]

The problem with the Arrhenius definitions is that they are specific to one particular solvent, water. When chemists studied nonaqueous solvents, such as liquid ammonia, they found that a number of substances showed the same pattern of acid-base behavior, but plainly the Arrhenius definitions could not be used. A major advance in our understanding of what it means to be an acid or a base came in 1923, when two chemists working independently, Thomas Lowry in England and Johannes Bronsted in Denmark, came up with the same idea. Their insight was to realize that the key process responsible for the properties of acids and bases was the transfer of a proton (a hydrogen ion) from one substance to another. The Bronsted-Lowry definition of acids and bases is as follows ... [Pg.97]

When chemists see a pattern in the reactions of certain substances, they formulate a definition of a class of substance that captures them all. The reactions of the substances we call acids and bases are an excellent illustration of this approach. The pattern in these reactions was first identified in aqueous solutions, and led to the Arrhenius definitions of acids and bases (Section J). However, chemists discovered that similar reactions take place in nonaqueous solutions and even in the absence of solvent. The original definitions had to be replaced by more general definitions that encompassed this new knowledge. [Pg.515]

The Bronsted definitions of acids and bases are more general than the Arrhenius definitions they also apply to species in nonaqueous solvents and even to gas-phase reactions. For example, when pure acetic acid is added to liquid ammonia, proton transfer takes place and the following equilibrium is reached ... [Pg.518]

An important implication of the Bronsted definitions of acids and bases is that the same substance may be able to function as both an acid and a base. For example, we have seen that a water molecule accepts a proton from an acid molecule (such as HC1 or HCN) to form an H30+ ion. So water is a base. I lowever, a water molecule can donate a proton to a base (such as O2- or NH3) and become an OH ion. So water is also an acid. We describe water as amphiprotic, meaning that an H20 molecule can act both as a proton donor and as a proton acceptor. [Pg.520]

Bronsted-Lowry definition A definition of acids and bases in terms of the ability of molecules and ions to participate in proton transfer. [Pg.943]

In Chapter H, we introduce a second definition of acids and bases, the Lewis definition, which focuses attention on electron movement rather than proton movement Until then, acid-base always means proton transfer."... [Pg.236]

Any reaction in which a proton is transferred from one substance to another is an acid-base reaction. More specifically, the proton-transfer view is known as the Bronsted-Lowiy definition of acids and bases. In an acid-base reaction, an acid donates a proton, and a base accepts that proton. Any species that can give up a proton to another substance is an acid, and any substance that can accept a proton from another substance is a base. The production of two water molecules from a hydroxide anion (a base) and a hydronium ion (an acid) is just one example of an acid-base reaction acids and bases are abundant in chemistry. [Pg.236]

In both cases the nitrogen atom uses its pair of nonbonding electrons to make a new covalent bond. This similarity led G. N. Lewis to classify ammonia as a base in its reaction with B (CH3)3 as well as in its reaction with H3 O . Whereas the Br< )nsted definition focuses on proton transfer, the Lewis definition of acids and bases focuses on electron pairs. [Pg.1499]

There are various definitions of acids and bases, and in discussing them it should be emphasized that the question is not one of validity but one of utility. Indeed, the problem of validity does not arise because of the fundamental nature of a definition. The problem is entirely one of choosing a definition which is of greatest use in the study of a particular field of acid-base chemistry. One point that needs to be borne in mind is that a concept of acids and bases is required that is neither too general nor too restrictive for the particular field of study. [Pg.12]

This definition of acids and bases is of restricted application. The reaction between acids and bases is seen as the combination of hydrogen and hydroxyl ions in aqueous solution to form water. [Pg.14]

Figure 2.1 Venn diagram showing the relationship between the various definitions of acids and bases. Figure 2.1 Venn diagram showing the relationship between the various definitions of acids and bases.
KolthoflF, I. M. (1944). The Lewis and Bronsted-Lowry definitions of acids and bases. Journal of Physical Chemistry, 48, 51-7. [Pg.28]

Any text on acids and bases would not be deemed complete if mention were not made of the extended definition of acids and bases that is embodied in the Lowry-Bronsted theory. The theory basically proposed a more general definition of acids and bases to overpower the limitations of the theory arising from the Arrhenius concept. [Pg.588]

It was G. N. Lewis who extended the definitions of acids and bases still further, the underlying concept being derived from the electronic theory of valence. It provided a much broader definition of acids and bases than that provided by the Lowry-Bronsted concept, as it furnished explanations not in terms of ionic reactions but in terms of bond formation. According to this theory, an acid is any species that is capable of accepting a pair of electrons to establish a coordinate bond, whilst a base is any species capable of donating a pair of electrons to form such a coordinate bond. A Lewis acid is an electron pair acceptor, while a Lewis base is an electron pair donor. These definitions of acids and bases fit the Lowry-Bronsted and Arrhenius theories, and cover many other substances which could not be classified as acids or bases in terms of proton transfer. [Pg.592]

According to the Bronsted-Lowry definition of acids and bases, an acid is a proton donor. The particle that is left over after an acid donates its proton, however, can now accept a proton and,... [Pg.23]

Arrhenius also formulated the first rational definition of acids and bases ... [Pg.23]

The Br0nsted theory expands the definition of acids and bases to allow us to explain much more of solution chemistry. For example, the Brpnsted theory allows us to explain why a solution of ammonium chloride tests acidic and a solution of sodium acetate tests basic. Most of the substances that we consider acids in the Arrhenius theory are also acids in the Bronsted theory, and the same is true of bases. In both theories, strong acids are those that react completely with water to form ions. Weak acids ionize only slightly. We can now explain this partial ionization as an equilibrium reaction of the ions, the weak acid, and the water. A similar statement can be made about weak bases ... [Pg.302]

This electrophile/nucleophile dichotomy can be looked upon as a special case of the acid/base idea. The classical definition of acids and bases is that the former are proton donors, and the latter proton acceptors. This was made more general by Lewis, who defined acids as compounds prepared to accept electron pairs, and bases as substances that could provide such pairs. This would include a number of compounds not previously thought of as acids and bases, e.g. boron trifluoride (39),... [Pg.29]

Although the concepts of specific acid and specific base catalysis were useful in the analysis of some early kinetic data, it soon became apparent that any species that could effect a proton transfer with the substrate could exert a catalytic influence on the reaction rate. Consequently, it became desirable to employ the more general Br0nsted-Lowry definition of acids and bases and to write the reaction rate constant as... [Pg.221]

B The Lewis Definition of Acids and Bases 1. Lewis acid-base theory in 1923 proposed by G. N. Lewis (1875-1946 Ph. D. Harvard, 1899 professor, Massachusetts Institute of Technology, 1905-1912 professor, University of California, Berkeley, 1912-1946). [Pg.92]

According to the Arrhenius theory of acids and bases, the acidic species in water is the solvated proton (which we write as H30+). This shows that the acidic species is the cation characteristic of the solvent. In water, the basic species is the anion characteristic of the solvent, OH-. By extending the Arrhenius definitions of acid and base to liquid ammonia, it becomes apparent from Eq. (10.3) that the acidic species is NH4+ and the basic species is Nl I,. It is apparent that any substance that leads to an increase in the concentration of NH4+ is an acid in liquid ammonia. A substance that leads to an increase in concentration of NH2- is a base in liquid ammonia. For other solvents, autoionization (if it occurs) leads to different ions, but in each case presumed ionization leads to a cation and an anion. Generalization of the nature of the acidic and basic species leads to the idea that in a solvent, the cation characteristic of the solvent is the acidic species and the anion characteristic of the solvent is the basic species. This is known as the solvent concept. Neutralization can be considered as the reaction of the cation and anion from the solvent. For example, the cation and anion react to produce unionized solvent ... [Pg.333]

Brpnsted s definition of acids and bases (see p. 234 and 240) emphasizes the complementary nature of acids and bases, but it is broader than Franklin s model because it does not require a solvent, and can even be applied to gas-phase reactions, e.g. HCl(g) + NH3(g) - NH4C1(s). [Pg.242]

At the microscopic level, the Arrhenius theory defines acids as substances which, when dissolved in water, yield the hydronium ion (H30+) or H+(aq). Bases are defined as substances which, when dissolved in water, yield the hydroxide ion (OH). Acids and bases may be strong (as in strong electrolytes), dissociating completely in water, or weak (as in weak electrolytes), partially dissociating in water. (We will see the more useful Brpnsted-Lowry definitions of acids and bases in Chapter 15.) Strong acids include ... [Pg.54]

In 1923 the American chemist G.N. Lewis provided a broad definition of acids and bases, which covered acid-base reactions not involving the traditional proton transfer an acid is an electron-pair acceptor (Lewis acid) and a base is an electron-pair donor (Lewis base). The concept was extended to metal-ligand interactions with the ligand acting as donor, or Lewis base, and the metal ion as acceptor, or Lewis acid. [Pg.15]

Thus, a reducing agent donates electrons, while an oxidizing agent receives them. The Bronsted-Lowry definitions of acid and base specify that... [Pg.232]

Lewis (1923) put forward another definition of acids and bases solely dependent on giving or taking of an electron pair. According to Lewis— an add is an electron pair acceptor, whereas a base is an electron pair donor . Therefore, it is obvious that whenever any neutralization occurs the formation of an altogether new coordinate covalent bond between the electron pair donor and acceptor atoms take place. [Pg.97]

These definitions of acids and bases sound very simple. Just one little proton moving around. What s the big deal That one little proton moving around and reacting has powerful consequences—a strong acid or base can eat through your skin, or even metal. [Pg.46]

Things are a little more complicated than implied by this statement. Molecules that donate protons and molecules that accept them are formally known as Bronsted acids and bases. There is a more general definition of acid and base— Lewis acids and bases—in which a Lewis acid is any molecule having the ability to accept a pair of electrons and a Lewis base is any molecule having the ability to donate a pair of electrons to a Lewis acid. The Bronsted concept will suffice for all our purposes. [Pg.376]

According to the Arrhenius definition of acids and bases, acids are substances that produce hydrogen ions (H+) in solution, and bases are substances that produce hydroxide ions (OH ) in solution. When an acid and a base combine, the hydrogen ions from the acid react with the hydroxide ions from the base to form water—a neutralization reaction. [Pg.41]


See other pages where Definitions of Acids and Bases is mentioned: [Pg.144]    [Pg.254]    [Pg.66]    [Pg.23]    [Pg.90]    [Pg.292]    [Pg.189]    [Pg.121]   


SEARCH



Acid-base definitions

Acidity definitions

Acids and bases definitions

Acids definition

Base, definition

© 2024 chempedia.info