Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decomposition, intensity

The selection of the most suitable antioxidant depends on the character of food and the targets which should be attained. Naturally occuring fats and oils contain indigenous antioxidants that protect the unsaturated lipids from free-radical destruction in their native vegetable and animal sources. On the other hand, fats and oils exist in a commingled fashion with reactive substances which cause their rapid decomposition. Intensity of oxidative alterations is also influenced by the shelf-life of products and storage conditions. All these facts should be considered when deciding whether any and if so what antioxidant will be used. [Pg.298]

The thermal decomposition of polymers involves exothermic and endothermic processes. Comparisons of experimental results obtained in the presence and absence of oxygen revealed that a pure thermal decomposition was not usually accompanied by exothermic heat changes while, during thermal oxidative decompositions, intensive heat evolution was generally observed. [Pg.100]

Subsequent studies (63,64) suggested that the nature of the chemical activation process was a one-electron oxidation of the fluorescer by (27) followed by decomposition of the dioxetanedione radical anion to a carbon dioxide radical anion. Back electron transfer to the radical cation of the fluorescer produced the excited state which emitted the luminescence characteristic of the fluorescent state of the emitter. The chemical activation mechanism was patterned after the CIEEL mechanism proposed for dioxetanones and dioxetanes discussed earher (65). Additional support for the CIEEL mechanism, was furnished by demonstration (66) that a linear correlation existed between the singlet excitation energy of the fluorescer and the chemiluminescence intensity which had been shown earher with dimethyl dioxetanone (67). [Pg.266]

Alitame (trade name Adame) is a water-soluble, crystalline powder of high sweetness potency (2000X, 10% sucrose solution sweetness equivalence). The sweet taste is clean, and the time—intensity profile is similar to that of aspartame. Because it is a stericaHy hindered amide rather than an ester, ahtame is expected to be more stable than aspartame. At pH 2 to 4, the half-life of aUtame in solution is reported to be twice that of aspartame. The main decomposition pathways (Fig. 6) include conversion to the unsweet P-aspartic isomer (17) and hydrolysis to aspartic acid and alanine amide (96). No cyclization to diketopiperazine or hydrolysis of the alanine amide bond has been reported. AUtame-sweetened beverages, particularly colas, that have a pH below 4.0 can develop an off-flavor which can be avoided or minimized by the addition of edetic acid (EDTA) [60-00-4] (97). [Pg.280]

Methyl bromide is nonflammable over a wide range of concentrations in air at atmospheric pressure and offers practically no fire hazard. With an intense source of ignition, flame propagation within a narrow range from 13.5 to 14.5% by volume has been reported. The material has no flash point. Thermal decomposition in a glass vessel begins somewhat above 400°C. [Pg.294]

Hydroxymethylmethyldiazirine (209 unprotonated) formed propionaldehyde as the sole product by thermal nitrogen extrusion 4-hydroxy-l,2-diazaspiro[2.5]oct-l-ene (218) formed a mixture of cyclohexanone (73%), cyclohexenol (21%) and cyclohexene oxide (5%). Thermal decomposition of difluorodiazirine (219) was investigated intensively. In this case there is no intramolecular stabilization possible. On heating for three hours to 165-180 °C hexafluorocyclopropane and tetrafluoroethylene were formed together with perfluorofor-maldazine 64JHC59). [Pg.223]

Thermal decomposition of chlorodiazirines has been investigated intensively during recent years. This was favored by the easy accessibility of chlorodiazirines with almost any... [Pg.224]

The rates of these reactions bodr in the gas phase and on the condensed phase are usually increased as the temperature of die process is increased, but a substantially greater effect on the rate cati often be achieved when the reactants are adsorbed on die surface of a solid, or if intense beams of radiation of suitable wavelength and particles, such as electrons and gaseous ions with sufficient kinetic energies, can be used to bring about molecular decomposition. It follows drat the development of lasers and plasmas has considerably increased die scope and utility of drese thermochemical processes. These topics will be considered in the later chapters. [Pg.2]

Decomposition of trichloroethylene can occur upon contact with naked flames, red-hot surfaces, hot elements of electric heaters, or intense UV light with the generation of acidic and highly-toxic products. The presence of reactive contaminants, e.g. acids, strong alkalis, highly-reactive metals, may also result in decomposition to similar products. [Pg.141]

An intensely colored by-product of the photolysis reaction of methyl-2-azidobenzoate has been identified as the first known derivative of 3,3 -diazaheptafulvalene 70 (94LA1165). Its molecular mass was established by elemental analysis and mass spectroscopy as that of a formal nitrene dimer, whereas and NMR studies demonstrated the twofold symmetry as well as the existence of a cross-conjugated 14 7r-electron system in 70. Involving l-azido-2,3-dimethoxy-5,6-dimethoxycarbonylbenzene in thermal decomposition reactions, the azaheptafulvalene 71 could be isolated and characterized spectroscopically and by means of X-ray diffraction. Tliis unusual fulvalene can be regarded as a vinylogous derivative of azafulvalenes (96JHC1333) (Scheme 28). [Pg.136]

Two types of digestion solutions are usually used for the chemical decomposition of the raw material hydrofluoric acid, HF, or a mixture of hydrofluoric and sulfuric acids, HF and H2SO4 [32], The process is performed using solutions with relatively high acid concentrations, at elevated temperatures and under intensive stirring for several hours to ensure effective digestion. The raw material is nearly completely dissolved. [Pg.256]

Properties of luciferin. The crystals are microscopic needles, which melt with decomposition at 205-210°C (Bitler and McElroy, 1957). It is a quite stable luciferin compared with some other luciferins, such as Cypridina luciferin and the luciferins of krill and dinoflagellates. It is not significantly affected by lOmM H2SO4 and lOmM NaOH at room temperature in air. The absorption spectral data of luciferin are shown in Fig. 1.3 (McElroy and Seliger, 1961). The molar absorption coefficient of the 328 nm peak in acidic solutions and that of the 384 nm peak in basic solutions are both 18,200 (Morton et al., 1969). Luciferin is fluorescent, showing an emission maximum at 537 nm in both acidic and basic conditions, although the intensity of the fluorescence is lower in acidic solution than in basic solution (fluorescence quantum yields 0.62 in basic condition, and 0.25 in acidic condition Morton et al., 1969). The chemical synthesis... [Pg.6]


See other pages where Decomposition, intensity is mentioned: [Pg.107]    [Pg.428]    [Pg.335]    [Pg.265]    [Pg.269]    [Pg.494]    [Pg.389]    [Pg.392]    [Pg.477]    [Pg.350]    [Pg.392]    [Pg.293]    [Pg.65]    [Pg.190]    [Pg.530]    [Pg.421]    [Pg.125]    [Pg.117]    [Pg.22]    [Pg.629]    [Pg.76]    [Pg.348]    [Pg.351]    [Pg.786]    [Pg.242]    [Pg.286]    [Pg.162]    [Pg.170]    [Pg.749]    [Pg.1206]    [Pg.41]    [Pg.206]    [Pg.210]    [Pg.214]    [Pg.35]    [Pg.125]    [Pg.39]    [Pg.40]   
See also in sourсe #XX -- [ Pg.385 ]




SEARCH



Decomposition, dependence light intensity

© 2024 chempedia.info