Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon decay

Hydrocarbon-water contact movement in the reservoir may be determined from the open hole logs of new wells drilled after the beginning of production, or from a thermal decay time (TDT) log run in an existing cased production well. The TDT is able to differentiate between hydrocarbons and saline water by measuring the thermal decay time of neutrons pulsed into the formation from a source in the tool. By running the TDT tool in the same well at intervals of say one or two years (time lapse TDTs), the rate of movement of the hydrocarbon-water contact can be tracked. This is useful in determining the displacement in the reservoir, as well as the encroachment of an aquifer. [Pg.336]

The radicals and other reaction components are related by various equiUbria, and hence their decay by recombination reactions occurs in essence as one process on which the complete conversion of CO to CO2 depends. Therefore, the hot products of combustion of any lean hydrocarbon flame typically have a higher CO content than the equiUbrium value, slowly decreasing toward the equiUbrium concentration (CO afterburning) along with the radicals, so that the oxidation of CO is actually a radical recombination process. [Pg.516]

Our complex modern life style was made possible by the discovery and refining of fossil fuels, fuels that are the result of the decay of organic matter laid down millions of years ago. The natural gas that heats our homes, the gasoline that powers our automobiles, and the coal that provides much of our electrical power are fossil fuels. Vast reserves of petroleum, the source of liquid hydrocarbon fuels such as gasoline and coal, exist in many areas of the world. However, although large, these reserves are limited, and we are using them up at a much faster rate than they can be replaced. [Pg.367]

With the development of new instrumental techniques, much new information on the size and shape of aqueous micelles has become available. The inceptive description of the micelle as a spherical agglomerate of 20-100 monomers, 12-30 in radius (JJ, with a liquid hydrocarbon interior, has been considerably refined in recent years by spectroscopic (e.g. nmr, fluorescence decay, quasielastic light-scattering), hydrodynamic (e.g. viscometry, centrifugation) and classical light-scattering and osmometry studies. From these investigations have developed plausible descriptions of the thermodynamic and kinetic states of micellar micro-environments, as well as an appreciation of the plurality of micelle size and shape. [Pg.225]

These were three bell curves with a maximum in winter for hydrocarbons and cyclohexanoi. There are two monotone decays for two alcohols (pentanol and cyclohexanol). Malonate has a more complex time evolution (two maxima, two minima). 1-butanol is the only one that has this unpredictable nature to be expected from a variable whose fluctuations are due to the error of measurement. [Pg.60]

Thus we see that in molecules possessing ->- 77 excited states inter-combinational transitions (intersystem crossing, phosphorescence, and non-radiative triplet decay) should be efficient compared to the same processes in aromatic hydrocarbons. This conclusion is consistent with the high phosphorescence efficiencies and low fluorescence efficiencies exhibited by most carbonyl and heterocyclic compounds. [Pg.436]

With many aromatic hydrocarbons as solutes, excited state yields in alkane solutions are nearly equally divided between singlets and triplets, and these yields increase with solute concentration until -0.1 M (Salmon, 1976 Thomas et al., 1968). In these systems, both the solute anion and the solute excited state yields increase similarly with solute concentration. With anthracene as a solute, the rate of growth of anthracene triplet matches that of the decay of the anthracene anion. With aromatic solvents, on the other hand, solute ions play... [Pg.112]

Measurements of the hydrocarbon fluorescence lifetimes provide important information which is useful in interpreting the Stern-Volmer plots. In cases where Equation 1 is valid, the hydrocarbon fluorescence decay profiles must be the same with and without DNA. In some cases, BP for example, this is not the case. For BP the observed decay profile changes significantly when DNA is added (72). [Pg.222]

Kamens, R.M., Guo, Z., Fulcher, J.N., Bell, D.A. (1988) Influence of humidity, sunlight, and temperature on daytime decay of polyaromatic hydrocarbons on atmospheric soot particles. Environ. Sci. Technol. 22, 103-108. [Pg.908]

Peroxyl radicals can undergo various reactions, e.g., hydrogen abstraction, isomerization, decay, and addition to a double bond. Chain propagation in oxidized aliphatic, alkyl-aromatic, alicyclic hydrocarbons, and olefins with weak C—H bonds near the double bond proceeds according to the following reaction as a limiting step of the chain process [2 15] ... [Pg.73]

CL accompanies many reactions of the liquid-phase oxidation of hydrocarbons, ketones, and other compounds. It was discovered in 1959 for liquid-phase ethylbenzene oxidation [219,220]. This phenomenon was intensively studied in the 1960s and 1970s, providing foundation for several methods of study of oxidation, decay of initiators, and kinetics of antioxidant action [12,17,221], Later this technique was effectively used to study the mechanism of solid polymer oxidation (see Chapter 13). [Pg.96]

The decay of the biradical produces ketone molecule in the triplet state, which is an emitter of light [222], The CL intensity was proved to be propotional to the rate of chain initiation, which is equal to the rate of chain termination. The observed luminescence spectra were found to be identical with the spectra of the subsequent ketone in the triplet state. The intensity of CL (/chi) produced by oxidized hydrocarbon is the following ... [Pg.96]

Free radicals are formed in the hydrocarbons are the result of decay of excited molecules (see earlier). The value of G(R ) from cyclohexane (RH) is 5.7 [222]. Various alkyl radicals are... [Pg.159]

Scheme B. Oxidation occurs as a chain reaction in scheme A. However, hydroperoxide formed is decomposed not by the reaction with free radicals but by a first-order molecular reaction with the rate constant km [3,56]. This scheme is valid for the oxidation of hydrocarbons where tertiary C—H bonds are attacked. For km 3> k i[RH] the maximum [ROOH] is attained at the hydroperoxide concentration when the rate of the formation of ROOH becomes equal to the rate of ROOH decay fl[RH](kj [ROOH][RH])l/2 km[ROOH] therefore, [ROOH]max = a2kn km 2 [RH]3. The kinetics of ROOH formation and RH consumption are described by the following equations [3],... Scheme B. Oxidation occurs as a chain reaction in scheme A. However, hydroperoxide formed is decomposed not by the reaction with free radicals but by a first-order molecular reaction with the rate constant km [3,56]. This scheme is valid for the oxidation of hydrocarbons where tertiary C—H bonds are attacked. For km 3> k i[RH] the maximum [ROOH] is attained at the hydroperoxide concentration when the rate of the formation of ROOH becomes equal to the rate of ROOH decay fl[RH](kj [ROOH][RH])l/2 km[ROOH] therefore, [ROOH]max = a2kn km 2 [RH]3. The kinetics of ROOH formation and RH consumption are described by the following equations [3],...
The kinetic analysis proves that formation of very active radical from intermediate product can increase the reaction rate not more than twice. However, the formation of inactive radical can principally stop the chain reaction [77], Besides the rate, the change of composition of chain propagating radicals can influence the rate of formation and decay of intermediates in the oxidized hydrocarbon. In its turn, the concentrations of intermediates (alcohols, ketones, aldehydes, etc.) influence autoinitiation and the rate of autoxidation of the hydrocarbon (see Chapter 4). [Pg.236]

The active alkoxyl radicals formed by this reaction start new chains. Apparently, the hydroperoxide group penetrates in the polar layer of the micelle and reacts with the bromide anion. The formed hydroxyl ion remains in the aqueous phase, and the MePhCHO radical diffuses into the hydrocarbon phase and reacts with ethylbenzene. The inverse emulsion of CTAB accelerates the decay of hydroperoxide MePhCHOOH. The decomposition of hydroperoxide occurs with the rate constant k = 7.2 x 1011 exp(-91.0/R7) L mol-1 s-1 (T = 323-353 K, CTAB, ethylbenzene [28]). The decay of hydroperoxide occurs more rapidly in an 02 atmosphere, than in an N2 atmosphere. [Pg.439]

The NMR study of RS0200H formed in the sulfoxidation of decane proved that these peracids are secondary with the >CHS0200H groups. They exist in monomeric and dimeric forms in hydrocarbon and CCI4 solutions [25,28]. The products of decay of. ver-decylsulfonic peracids are seodecylsulfonic acids (100%), alcohols (75%), ketones (22%), and water (negligible amounts) [39]. [Pg.449]

Dioxygen retards the decay of peracids. For example, kobs = 4.0x 10 6 s 1 in a dioxygen atmosphere and kohs = 1.3 x 10 5 s-1 in an Ar atmosphere (T 345 K, decane, [RSO4H]0 = 9.0 x 10 mol L-1 [25,39]). The decay of peracid is accompanied by the consumption of dioxygen. The ratio of v0/vd> 1 and decreases with an increase in the initial peracid concentration. All these facts prove that peracid decomposes with free radical formation and radicals R formed from the solvent (RH) induce the chain decomposition of peracid with alcohol formation. The decay of peracid to free radicals involves hydrocarbon and bimolecular peracid associates [25,28]. [Pg.449]

Similar to that of hydrocarbons, the autoxidation of PP occurs with acceleration and obeys the following equation [12] because the decay of POOH is negligible. [Pg.474]


See other pages where Hydrocarbon decay is mentioned: [Pg.88]    [Pg.457]    [Pg.250]    [Pg.472]    [Pg.25]    [Pg.530]    [Pg.86]    [Pg.631]    [Pg.541]    [Pg.102]    [Pg.437]    [Pg.111]    [Pg.231]    [Pg.245]    [Pg.129]    [Pg.135]    [Pg.180]    [Pg.240]    [Pg.306]    [Pg.307]    [Pg.93]    [Pg.227]    [Pg.227]    [Pg.400]    [Pg.176]    [Pg.363]    [Pg.472]    [Pg.37]    [Pg.174]    [Pg.209]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



© 2024 chempedia.info