Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Data Analysis Reference

Assuming the other optical elements to be negligible (not always true), the beam path (I) through the liquid is equal to IdjcosO, where 9 is the angle from normal at the liquid/solid interface and d is the thickness of the solvent layer, as shown in Fig. 5.6. Thus, the beam pathlength to the surface is djcosB, and the absorbance is A=log[fo/fl=ecl. I and lo are the incident and transmitted in- [Pg.171]

SFG spectra, once corrected and normalized, are curve fit to a chosen line shape function. Typically the curve is a Lorentzian fine shape function as given in (6), although other spectral functions have been used as well [48]. [Pg.172]


An additional feature of ELECTRAS is a module which provides an introduction to various data analysis techniques One part of this module provides a typical work flow for data analysis. It explains the important steps when conducting a data analysis and describes the output of the data analysis methods. The second part gives a description of the methods offered. This modvJe can be used both as a guideline for novice users and as a reference for experts. [Pg.452]

The endpoint value for any changing concentration, such as [A ], sometimes referred to as the infinity point, is extremely important in the data analysis, particularly when the order of the reaction is not certain. The obvious way to determine it, ie, by allowing the reaction to proceed for a long time, is not always rehable. It is possible for secondary reactions to interfere. It may sometimes be better to calculate the endpoint from a knowledge of the... [Pg.508]

Figure 27.1 summarises the methodology for designing a component which must carry load. At the start there are two parallel streams materials selection and component design. A tentative material is chosen and data for it are assembled from data sheets like the ones given in this book or from data books (referred to at the end of this chapter). At the same time, a tentative component design is drawn up, able to fill the function (which must be carefully defined at the start) and an approximate stress analysis is carried out to assess the stresses, moments, and stress concentrations to which it will be subjected. [Pg.291]

In this review we put less emphasis on the physics and chemistry of surface processes, for which we refer the reader to recent reviews of adsorption-desorption kinetics which are contained in two books [2,3] with chapters by the present authors where further references to earher work can be found. These articles also discuss relevant experimental techniques employed in the study of surface kinetics and appropriate methods of data analysis. Here we give details of how to set up models under basically two different kinetic conditions, namely (/) when the adsorbate remains in quasi-equihbrium during the relevant processes, in which case nonequilibrium thermodynamics provides the needed framework, and (n) when surface nonequilibrium effects become important and nonequilibrium statistical mechanics becomes the appropriate vehicle. For both approaches we will restrict ourselves to systems for which appropriate lattice gas models can be set up. Further associated theoretical reviews are by Lombardo and Bell [4] with emphasis on Monte Carlo simulations, by Brivio and Grimley [5] on dynamics, and by Persson [6] on the lattice gas model. [Pg.440]

A recent series of papers [18, 24, 32-34] substantially clears up the three-dimensional polymerization mechanism in the AAm-MBAA system. Direct observation of the various types of acrylamide group consumption using NMR technique, analysis of conversion at the gel-point, and correlation of the elastic modulus with swelling indicate a considerable deviation of the system from the ideal model and a low efficiency of MBAA as a crosslinker. Most of these experimental data, however, refer to the range of heterogeneous hydrogels where swelling is not more than 80 ml ml-1 [24]. [Pg.103]

Toward these ends, the kinetics of a wider set of reaction schemes is presented in the text, to make the solutions available for convenient reference. The steady-state approach is covered more extensively, and the mathematics of other approximations ( improved steady-state and prior-equilibrium) is given and compared. Coverage of data analysis and curve fitting has been greatly expanded, with an emphasis on nonlinear least-squares regression. [Pg.293]

The Mo K-edge EXAFS spectra for the catalysts and reference compounds (MoSj and NajMoOJ were measured on the BL-lOB instruments of the Photon Factory at the National Laboratory for High Energy Physics by using a synchrotron radiation. The EXAFS spectra were obtained at room temperature without exposing the sample to air by using an in situ EXAFS cell with Kapton windows [12]. Data analysis was earned out assuming a plane wave approximation. [Pg.504]

The ESR measurements were made at RT or 77 K on a Varian E-9 spectrometer (X-band), equipped with an on-line computer for data analysis. Spin-Hamiltonian parameters (g and A values) were obtained from calculated spectra using the program SIM14 A [26]. The absolute concentration of the paramagnetic species was determined from the integrated area of the spectra. Values of g were determined using as reference the sharp peak at g = 2.0008 of the E i center (marked with an asterisk in Fig. 3) the center was formed by UV irradiation of the silica dewar used as sample holder. [Pg.692]

A question that often arises in multivariate data analysis is how many meaningful eigenvectors should be retained, especially when the objective is to reduce the dimensionality of the data. It is assumed that, initially, eigenvectors contribute only structural information, which is also referred to as systematic information. [Pg.140]

Quantitative XRF analysis has developed from specific to universal methods. At the time of poor computational facilities, methods were limited to the determination of few elements in well-defined concentration ranges by statistical treatment of experimental data from reference material (linear or second order curves), or by compensation methods (dilution, internal standards, etc.). Later, semi-empirical influence coefficient methods were introduced. Universality came about by the development of fundamental parameter approaches for the correction of total matrix effects... [Pg.631]

More specifically, input data analysis methods are similar to input-output methods, but rely on different strategies for extracting the relevant information. With reference to the general expression in Eq. (4), the resulting analyzed or latent variable for all input methods can be represented as... [Pg.10]

With reference to Fig. 4, this section presents several examples that demonstrate how various technologies can be assembled into data analysis and interpretation systems in practical application. [Pg.82]

Figures 8 and 9 show the first order kinetic plots for the isomerization and crosslinking reactions, respectively. In the data analysis the area of the isoimide peak was measured between consistent limits chosen to exclude any contribution from the 1775 cm imide band. These data were generated by measuring the area of the appropriate peak in a baseline corrected spectrum and ratioing this area to that of a reference peak (which was invarient during the experiment) in the same spectrum. This concentration indicative number was then ratioed to the concentration ratio observed on the initial scan. Plots of the log of the ratio of the concentration of the functionality at time "t" to the concentration of the functionality at t = 0 were then constructed. In order to insure that the trends in the data were not artifacts of this procedure or of the baseline correction routine, we also plotted the data in terms of peak intensity in absorbance units and observed the same trends but with more scatter in the data. Figures 8 and 9 show the first order kinetic plots for the isomerization and crosslinking reactions, respectively. In the data analysis the area of the isoimide peak was measured between consistent limits chosen to exclude any contribution from the 1775 cm imide band. These data were generated by measuring the area of the appropriate peak in a baseline corrected spectrum and ratioing this area to that of a reference peak (which was invarient during the experiment) in the same spectrum. This concentration indicative number was then ratioed to the concentration ratio observed on the initial scan. Plots of the log of the ratio of the concentration of the functionality at time "t" to the concentration of the functionality at t = 0 were then constructed. In order to insure that the trends in the data were not artifacts of this procedure or of the baseline correction routine, we also plotted the data in terms of peak intensity in absorbance units and observed the same trends but with more scatter in the data.
Chemical analyses were performed by ICP at the Vemaison Center of Chemical Analysis of the CNRS. XRD patterns were obtained on a diffractometer with a copper anode. Scan was taken at 28 rate of 0.2°/min and structural data for reference compounds were taken from the ASTM X-ray powder data file. [Pg.130]

Chromatographic procedures applied to the identification of proteinaceous paint binders tend to be rather detailed consisting of multiple analytical steps ranging from solvent extractions, chromatography clean up, hydrolysis, derivatisation reactions, and measurement to data analysis. Knowledge of the error introduced at each step is necessary to minimise cumulative uncertainty. Reliable results are consequently obtained when laboratory and field blanks are carefully characterised. Additionally, due to the small amounts of analyte and the high sensitivity of the analysis, the instrument itself must be routinely calibrated with amino acid standards along with measurements of certified reference proteins. All of these factors must be taken into account because many times there is only one chance to take the measurement. [Pg.247]

In the following we will focus on three molecular electronics test beds as developed and employed for applications at electrified solid/liquid interfaces (1) STM and STS, (2) assemblies based on horizontal nanogap electrodes, and (3) mechanically-controlled break junction experiments. For a more detailed description of the methods we refer to several excellent reviews published recently [16-22]. We will also address specific aspects of electrolyte gating and of data analysis. [Pg.126]

Many studies have reported the analysis of estrogens and progestogens in WW and other water samples, but for solid samples, little is found in the literature. This chapter briefly reviews the methods described for WW samples and discuss the very few methods used up to now to analyze solid samples (sediments, sludge, and soil). For more detailed data we refer to the reviews ... [Pg.16]

Figure 3.1 Schematic diagram of an AAS spectrometer. A is the light source (hollow cathode lamp), B is the beam chopper (see Fig. 3.2), C is the burner, D the monochromator, E the photomultiplier detector, and F the computer for data analysis. In the single beam instrument, the beam from the lamp is modulated by the beam chopper (to reduce noise) and passes directly through the flame (solid light path). In a double beam instrument the beam chopper is angled and the rear surface reflective, so that part of the beam is passed along the reference beam path (dashed line), and is then recombined with the sample beam by a half-silvered mirror. Figure 3.1 Schematic diagram of an AAS spectrometer. A is the light source (hollow cathode lamp), B is the beam chopper (see Fig. 3.2), C is the burner, D the monochromator, E the photomultiplier detector, and F the computer for data analysis. In the single beam instrument, the beam from the lamp is modulated by the beam chopper (to reduce noise) and passes directly through the flame (solid light path). In a double beam instrument the beam chopper is angled and the rear surface reflective, so that part of the beam is passed along the reference beam path (dashed line), and is then recombined with the sample beam by a half-silvered mirror.
As discussed in chapters 7 and 8, the initial step of the data analysis of a isoperibol calorimetry experiment is the determination of the enthalpy of the isothermal calorimetric process, A//ICp, usually at the reference temperature of 298.15 K. The value of A/Ticp corresponding to any point p along the titration period is given by (recall the discussion of equation 8.1)... [Pg.159]


See other pages where Data Analysis Reference is mentioned: [Pg.171]    [Pg.56]    [Pg.171]    [Pg.56]    [Pg.2725]    [Pg.47]    [Pg.523]    [Pg.92]    [Pg.59]    [Pg.109]    [Pg.766]    [Pg.364]    [Pg.89]    [Pg.43]    [Pg.95]    [Pg.182]    [Pg.283]    [Pg.344]    [Pg.251]    [Pg.4]    [Pg.43]    [Pg.820]    [Pg.29]    [Pg.39]    [Pg.110]    [Pg.343]    [Pg.383]    [Pg.525]    [Pg.339]    [Pg.339]   


SEARCH



Reference analysis

Reference data

© 2024 chempedia.info