Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bacteria cytochromes

Despite considerable efforts very few membrane proteins have yielded crystals that diffract x-rays to high resolution. In fact, only about a dozen such proteins are currently known, among which are porins (which are outer membrane proteins from bacteria), the enzymes cytochrome c oxidase and prostaglandin synthase, and the light-harvesting complexes and photosynthetic reaction centers involved in photosynthesis. In contrast, many other membrane proteins have yielded small crystals that diffract poorly, or not at all, using conventional x-ray sources. However, using the most advanced synchrotron sources (see Chapter 18) it is now possible to determine x-ray structures from protein crystals as small as 20 pm wide which will permit more membrane protein structures to be elucidated. [Pg.224]

Another important group of cytochromes, found in plants, bacteria and animals is cytochrome P-450, so-called because of the absorption at 450 nm characteristic of their complexes with CO. Their function is to activate... [Pg.1101]

Heme d,6 another isobacteriochlorin, occurs as one of two cofactors in the reductase cytochrome cdj which mediates the nitrite reduction to nitrogen monoxide (NO) and from there to dinitrogen oxide (N20) in denitrifying bacteria.7... [Pg.644]

Rieske proteins are constituents of the be complexes that are hydro-quinone-oxidizing multisubunit membrane proteins. All be complexes, that is, bci complexes in mitochondria and bacteria, b f complexes in chloroplasts, and corresponding complexes in menaquinone-oxidizing bacteria, contain three subunits cytochrome b (cytochrome 6e in b f complexes), cytochrome Ci (cytochrome f in b(,f complexes), and the Rieske iron sulfur protein. Cytochrome 6 is a membrane protein, whereas the Rieske protein, cytochrome Ci, and cytochrome f consist of water-soluble catalytic domains that are bound to cytochrome b through a membrane anchor. In Rieske proteins, the membrane anchor can be identified as an N-terminal hydrophobic sequence (13). [Pg.86]

In be complexes bci complexes of mitochondria and bacteria and b f complexes of chloroplasts), the catalytic domain of the Rieske protein corresponding to the isolated water-soluble fragments that have been crystallized is anchored to the rest of the complex (in particular, cytochrome b) by a long (37 residues in bovine heart bci complex) transmembrane helix acting as a membrane anchor (41, 42). The great length of the transmembrane helix is due to the fact that the helix stretches across the bci complex dimer and that the catalytic domain of the Rieske protein is swapped between the monomers, that is, the transmembrane helix interacts with one monomer and the catalytic domain with the other monomer. The connection between the membrane anchor and the catalytic domain is formed by a 12-residue flexible linker that allows for movement of the catalytic domain during the turnover of the enzyme (Fig. 8a see Section VII). Three different positional states of the catalytic domain of the Rieske protein have been observed in different crystal forms (Fig. 8b) (41, 42) ... [Pg.107]

The group of the be complexes comprises bci complexes in mitochondria and bacteria and bef complexes in chloroplasts. These complexes are multisubunit membrane proteins containing four redox centers in three subunits cytochrome b (cytochrome be in bef complexes) comprising two heme b centers in a transmembrane arrangement, cyto-... [Pg.146]

In contrast to common usage, the distinction between photosynthetic and respiratory Rieske proteins does not seem to make sense. The mitochondrial Rieske protein is closely related to that of photosynthetic purple bacteria, which represent the endosymbiotic ancestors of mitochondria (for a review, see also (99)). Moreover, during its evolution Rieske s protein appears to have existed prior to photosynthesis (100, 101), and the photosynthetic chain was probably built around a preexisting cytochrome be complex (99). The evolution of Rieske proteins from photosynthetic electron transport chains is therefore intricately intertwined with that of respiration, and a discussion of the photosynthetic representatives necessarily has to include excursions into nonphotosynthetic systems. [Pg.347]

The cytochromes are iron-containing hemoproteins in which the iron atom oscillates between Fe + and Fe + during oxidation and reduction. Except for cytochrome oxidase (previously described), they are classified as dehydrogenases. In the respiratory chain, they are involved as carriers of electrons from flavoproteins on the one hand to cytochrome oxidase on the other (Figure 12-4). Several identifiable cytochromes occur in the respiratory chain, ie, cytochromes b, Cp c, a, and (cytochrome oxidase). Cytochromes are also found in other locations, eg, the endoplasmic reticulum (cytochromes P450 and h, and in plant cells, bacteria, and yeasts. [Pg.88]

Superoxide is formed (reaction 1) in the red blood cell by the auto-oxidation of hemoglobin to methemo-globin (approximately 3% of hemoglobin in human red blood cells has been calculated to auto-oxidize per day) in other tissues, it is formed by the action of enzymes such as cytochrome P450 reductase and xanthine oxidase. When stimulated by contact with bacteria, neutrophils exhibit a respiratory burst (see below) and produce superoxide in a reaction catalyzed by NADPH oxidase (reaction 2). Superoxide spontaneously dismu-tates to form H2O2 and O2 however, the rate of this same reaction is speeded up tremendously by the action of the enzyme superoxide dismutase (reaction 3). Hydrogen peroxide is subject to a number of fates. The enzyme catalase, present in many types of cells, converts... [Pg.611]

They are widely distributed across species. Bacteria possess cytochrome P450s, and P450cani (involved in the metabolism of camphor) of Pseudomonas putida is the only P450 isoform whose crystal stmcture has been established. [Pg.627]

Dufosse, L. and de Echanove, C., The last step in the biosynthesis of aryl carotenoids in the cheese ripening bacteria Brevibacterium linens ATCC 9175 (Brevibacterium aurantiacum sp. nov.) involves a cytochrome P450-dependent monooxygenase. Food Res. Int, 38, 967, 2005. [Pg.426]

Seeliger S, R Cord-Ruwisch B Schink (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carried to other acceptors or to partner bacteria. J Bacteriol 180 3686-3691. [Pg.161]

Although reduction of chromate Cr to Cr has been observed in a number of bacteria, these are not necessarily associated with chromate resistance. For example, reduction of chromate has been observed with cytochrome Cj in Desulfovibrio vulgaris (Lovley and Phillips 1994), soluble chromate reductase has been purified from Pseudomonas putida (Park et al. 2000), and a membrane-bound reductase has been purified from Enterobacter cloacae (Wang et al. 1990). The flavoprotein reductases from Pseudomonas putida (ChrR) and Escherichia coli (YieF) have been purified and can reduce Cr(VI) to Cr(III) (Ackerley et al. 2004). Whereas ChrR generated a semi-quinone and reactive oxygen species, YieR yielded no semiquinone, and is apparently an obligate four-electron reductant. It could therefore present a suitable enzyme for bioremediation. [Pg.172]

The operation of cytochrome P450 in alkane oxidation has been reported both in bacteria and in yeasts. It has been shown that alkane hydroxylases of CHYP 153 are widespread both in Gram-negative and Gram-positive bacteria that lack the integral membrane alkane hydroxylase (van Beilin et al. 2006). [Pg.303]

Kolb S, S Seeliger, N Springer, W Ludwig, B Schink (1998) The fermenting bacterium Malonomonas rubra is phylogenetically related to sulfur-reducing bacteria and contains a c-type cytochrome similar to those of sulfur and sulfate reducers. SystAppl Microbiol 21 340-345. [Pg.330]

Michel, C., Brugna, M., Aubert, C., Bernadac, A. and Bruschi, M., Enzymatic reduction of chromate comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochroms c and hydro-genases. Appl. Microbiol. Biotechnol., 55, 95-100, 2001. [Pg.568]

The cytochrome system of enzymes has long been known to be associated with the activity of the nitrifying bacteria which catalyze, for example, the oxidation of ammonia ... [Pg.158]


See other pages where Bacteria cytochromes is mentioned: [Pg.245]    [Pg.101]    [Pg.723]    [Pg.1098]    [Pg.362]    [Pg.412]    [Pg.119]    [Pg.9]    [Pg.10]    [Pg.88]    [Pg.305]    [Pg.346]    [Pg.402]    [Pg.71]    [Pg.114]    [Pg.151]    [Pg.153]    [Pg.202]    [Pg.344]    [Pg.409]    [Pg.475]    [Pg.216]    [Pg.417]    [Pg.1029]    [Pg.157]    [Pg.167]    [Pg.55]    [Pg.70]    [Pg.107]    [Pg.185]   
See also in sourсe #XX -- [ Pg.622 ]

See also in sourсe #XX -- [ Pg.622 ]

See also in sourсe #XX -- [ Pg.6 , Pg.622 ]




SEARCH



Alkanes cytochrome P450 bacteria

Cytochrome oxidase, anaerobic bacteria

Photosynthetic bacteria cytochromes

Photosynthetic bacteria, purple, cytochrome

Sulfate-reducing bacteria, cytochrome

The ubiquinol-cytochrome c oxidoreductase of photosynthetic bacteria

© 2024 chempedia.info