Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cytochrome release

Kinetic studies of cytochrome release during apoptosis in Hela cells (Goldstein et al., 2000) indicate that, after an initial and variable lag period, all the cytochrome c is released within a short period of five minutes. This... [Pg.5]

As a class of compounds, the two main toxicity concerns for nitriles are acute lethality and osteolathyrsm. A comprehensive review of the toxicity of nitriles, including detailed discussion of biochemical mechanisms of toxicity and stmcture-activity relationships, is available (12). Nitriles vary broadly in their abiUty to cause acute lethaUty and subde differences in stmcture can greatly affect toxic potency. The biochemical basis of their acute toxicity is related to their metaboHsm in the body. Following exposure and absorption, nitriles are metabolized by cytochrome p450 enzymes in the Hver. The metaboHsm involves initial hydrogen abstraction resulting in the formation of a carbon radical, followed by hydroxylation of the carbon radical. MetaboHsm at the carbon atom adjacent (alpha) to the cyano group would yield a cyanohydrin metaboHte, which decomposes readily in the body to produce cyanide. Hydroxylation at other carbon positions in the nitrile does not result in cyanide release. [Pg.218]

While this electron flow takes place, the cytochrome on the periplasmic side donates an electron to the special pair and thereby neutralizes it. Then the entire process occurs again another photon strikes the special pair, and another electron travels the same route from the special pair on the periplasmic side of the membrane to the quinone, Qb, on the cytosolic side, which now carries two extra electrons. This quinone is then released from the reaction center to participate in later stages of photosynthesis. The special pair is again neutralized by an electron from the cytochrome. [Pg.240]

Oxidation of this UQHg occurs in two steps. First, an electron from UQHg is transferred to the Rieske protein and then to cytochrome C. This releases two to the cytosol and leaves UQ , a semiquinone anion form of UQ, at... [Pg.687]

Why has nature chosen this rather convoluted path for electrons in Complex 111 First of all. Complex 111 takes up two protons on the matrix side of the inner membrane and releases four protons on the cytoplasmic side for each pair of electrons that passes through the Q cycle. The apparent imbalance of two protons in ior four protons out is offset by proton translocations in Complex rV, the cytochrome oxidase complex. The other significant feature of this mechanism is that it offers a convenient way for a two-electron carrier, UQHg, to interact with the bj and bfj hemes, the Rieske protein Fe-S cluster, and cytochrome C, all of which are one-electron carriers. [Pg.688]

Figure 11.15 Cation-exchange mia O-LC analysis of a mixture of model proteins (a) the original sample consisting of myoglobin (M), cytochrome C (C) and lysozyme (L) (b) and (c) proteins adsorbed on to and then released from the polyaaylic acid coated fibre with exti ac-tion times of 5 and 240 s, respectively. Reprinted from Journal of Microcolumn Separations, 8, J.-L. Liao et al., Solid phase mia O exti action of biopolymers, exemplified with adsorption of basic proteins onto a fiber coated with polyaaylic acid, pp. 1-4, 1996, with permission from Jolm Wiley Sons, New York. Figure 11.15 Cation-exchange mia O-LC analysis of a mixture of model proteins (a) the original sample consisting of myoglobin (M), cytochrome C (C) and lysozyme (L) (b) and (c) proteins adsorbed on to and then released from the polyaaylic acid coated fibre with exti ac-tion times of 5 and 240 s, respectively. Reprinted from Journal of Microcolumn Separations, 8, J.-L. Liao et al., Solid phase mia O exti action of biopolymers, exemplified with adsorption of basic proteins onto a fiber coated with polyaaylic acid, pp. 1-4, 1996, with permission from Jolm Wiley Sons, New York.
The biological activity of the polymers was evaluated in vitro by the ability to stimulate the release of superoxide from DMSO-differentiated HL-60 cells [18-20]. The released superoxide was monitored by the cytochrome C method [21,22]. As shown in Figure 7, when the differen-... [Pg.183]

Figure 7 Differentiation of HL-60 cells by the incubation with dimethylsulfoxide [DMSO] (a), and the assay of superoxide release in the DMSO-differentiated HL-60 cells by cytochrome C method (b). Figure 7 Differentiation of HL-60 cells by the incubation with dimethylsulfoxide [DMSO] (a), and the assay of superoxide release in the DMSO-differentiated HL-60 cells by cytochrome C method (b).
BH3 domain) of the BH3-only proteins binds to other Bcl-2 family members thereby influencing their conformation. This interaction facilitates the release of cytochrome C and other mitochondrial proteins from the intermembrane space of mitochondria. Despite much effort the exact biochemical mechanism which governs this release is not yet fully understood. The release of cytochrome C facilitates the formation of the apoptosome, the second platform for apoptosis initiation besides the DISC. At the apoptosome which is also a multi-protein complex the initiator caspase-9 is activated. At this point the two pathways converge. [Pg.206]

Active caspases 8, 9 and 10 can convert caspase-3, the most abundant effector caspase from its pro-form to its active cleaved form. Cleavage of a number of different substrates by caspase-3 and also by caspase-6 and -7 which are two other executioner caspases besides caspase-3 then results in the typical morphology which is characteristic of apoptosis. Yet, the activation of caspase-3 and also of caspase-9 can be counteracted by IAPs, so called inhibitor of apoptosis proteins. However, concomitantly with cytochrome C also other proteins are released from mitochondria, including Smac/DIABLO. Smac/DIABLO and potentially other factors can interact with IAPs and thereby neutralize their caspase-inhibitory activity. This releases the breaks on the cell death program and allows apoptosis to ensue. [Pg.207]

Mitochondrial permeability transition involves the opening of a larger channel in the inner mitochondrial membrane leading to free radical generation, release of calcium into the cytosol and caspase activation. These alterations in mitochondrial permeability lead eventually to disruption of the respiratory chain and dqDletion of ATP. This in turn leads to release of soluble intramito-chondrial membrane proteins such as cytochrome C and apoptosis-inducing factor, which results in apoptosis. [Pg.776]

Neurodegeneration. Figure 3 Illustration of synaptic (neuritic) apoptosis. A pyramidal neuron is depicted with cortical afferents synapsing on its dendrites. Localized apoptotic mechanisms lead to the release of cytochrome c from the mitochondria and an increase in the concentration of activated caspase-3 in a presynaptic terminal that is synapsing on a dendritic spine. Increased caspase-3 activity results in a localized breakdown of this nerve terminal and its synapse. Subsequently, the postsynaptic dendritic spine retracts and disappears (Figure modified from Glantz et al. [5] [3]). [Pg.825]

Two main apoptotic pathways have been identified in mammalian cells the extrinsic pathway that is activated by the binding of ligands to cell-surface death receptors, and the intrinsic pathway that involves the mitochondrial release of cytochrome cP The activation of extrinsic and intrinsic apoptotic pathways promotes the cleavage into the active form of the pro-caspase-8 and pro-caspase-9, respectively, that mainly determine the activation of effector caspase-3. ° The intrinsic pathway is the main apoptotic pathway activated by chemotherapeutic drugs, while the cytotoxic drug-induced activation of the extrinsic pathway is a more controversial issue. ... [Pg.359]

Transmittance through cytochrome C decreases as released superoxide reduces the cytochrome C. [Pg.28]

Jaffe, H.A., Buhl, R., Borok, Z., Trapnell, B. and Crystal, R.G. (1989). Activated alveolar macrophages express increased levels of cytochrome b245 heavy chain mRNA transcripts correlating with enhanced capacity to release oxidants. Clin. Res. 37, 477A. [Pg.229]

Alcohol dehydrogenases found in certain microorganisms utilize a pyrroloquino-line quinone (PQQ) or flavin cofactor to pass electrons released upon oxidation of alcohols to the heme electron-acceptor protein, cytochrome c. These membrane-associated alcohol dehydrogenases form part of a respiratory chain, and the energy from fuel oxidation therefore contributes to generation of a proton gradient across... [Pg.610]


See other pages where Cytochrome release is mentioned: [Pg.66]    [Pg.53]    [Pg.66]    [Pg.53]    [Pg.95]    [Pg.283]    [Pg.707]    [Pg.719]    [Pg.719]    [Pg.1101]    [Pg.92]    [Pg.207]    [Pg.789]    [Pg.824]    [Pg.824]    [Pg.824]    [Pg.909]    [Pg.1295]    [Pg.121]    [Pg.126]    [Pg.32]    [Pg.335]    [Pg.29]    [Pg.248]    [Pg.168]    [Pg.172]    [Pg.40]    [Pg.114]    [Pg.75]    [Pg.216]    [Pg.236]    [Pg.239]    [Pg.640]    [Pg.282]    [Pg.285]    [Pg.282]   
See also in sourсe #XX -- [ Pg.395 , Pg.396 , Pg.398 , Pg.399 ]




SEARCH



Cytochrome c release

Cytochrome c, release in apoptosis

Metabolism and Release of Cytochrome c from Mitochondria

© 2024 chempedia.info