Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cysteine residues oxidation

Two cysteine residues in different parts of the polypeptide chain but adjacent in the three-dimensional structure of a protein can be oxidized to form a disulfide bridge (Figure 1.4). The disulfide is usually the end product of air oxidation according to the following reaction scheme ... [Pg.5]

CH2SH + 1/2 O2 -CH2-S-S-CH2 + H2O Disulfide bonds form between the side chains of two cysfeine residues. Two SH groups from cysteine residues, which may be in different parts of the amino acid sequence but adjacent in the three-dimensional structure, are oxidized to form one S-S (disulfide) group. [Pg.5]

A second kind of covalent bonding in peptides occurs when a disulfide linkage, RS-SR, is formed between two cysteine residues. As we saiv in Section 18.8, a disulfide is formed by mild oxidation of a thiol, RSH, and is cleaved by mild reduction. [Pg.1029]

The third reason for favoring a non-radical pathway is based on studies of a mutant version of the CFeSP. This mutant was generated by changing a cysteine residue to an alanine, which converts the 4Fe-4S cluster of the CFeSP into a 3Fe-4S cluster (14). This mutation causes the redox potential of the 3Fe-4S cluster to increase by about 500 mV. The mutant is incapable of coupling the reduction of the cobalt center to the oxidation of CO by CODH. Correspondingly, it is unable to participate in acetate synthesis from CH3-H4 folate, CO, and CoA unless chemical reductants are present. If mechanism 3 (discussed earlier) is correct, then the methyl transfer from the methylated corrinoid protein to CODH should be crippled. However, this reaction occurred at equal rates with the wild-type protein and the CFeSP variant. We feel that this result rules out the possibility of a radical methyl transfer mechanics and offers strong support for mechanism 1. [Pg.324]

A relationship between the redox state of an iron—sulfur center and the conformation of the host protein was furthermore established in an X-ray crystal study on center P in Azotobacter vinelandii nitroge-nase (270). In this enzyme, the two-electron oxidation of center P was found to be accompanied by a significant displacement of about 1 A of two iron atoms. In both cases, this displacement was associated with an additional ligation provided by a serine residue and the amide nitrogen of a cysteine residue, respectively. Since these two residues are protonable, it has been suggested that this structural change might help to synchronize the transfer of electrons and protons to the Fe-Mo cofactor of the enzyme (270). [Pg.481]

Chemical modifications like alkylation with (A-ethylmaleimide (NEM) or oxidation with diamide that inhibit the phosphorylation activity of the enzyme did not seem to have any significant effect on the high affinity binding site when the enzyme was solubilized in the detergent decyl-PEG [69,41]. However, in the intact membrane these treatments reduced the affinity by a factor of 2-3. The reduction of the affinity was exclusively due to modification of the cysteine residue at position 384 in the B domain [69]. Apparently, the detergent effects the interaction between the B and C domains. [Pg.149]

Insulin, a small protein of molecular mass 6000 daltons, is composed of two chains designated A and B. There are no reduced cysteine residues in insulin, but it contains three essential disulfide bonds two that crosslink the A and B chains, and one internal to the A chain to stabilize the overall tertiary stmcture. These disulfide bonds are cleaved in the presence of excess AuX4, leaving A and B chains that have cysteine residues that have become oxidized to sulfonic adds [119]. With smaller amounts of AuX4, a single disulfide bond will be attacked to form sulfinic acid [119]. The reaction is second order for AuCU while AuBr4 reacts too quickly for accurate monitoring. [Pg.301]

This reaction also protects proteins with cysteine residues from becoming oxidized to the disulfide since the GSH can be used to reduce the protein disulfide back to the thiol form ... [Pg.198]

Deoxynucleotides for DNA synthesis are made at the nucleoside diphosphate level and then have to be phosphorylated up to the triphosphate using a kinase and ATP. The reducing equivalents for the reaction come from a small protein, thioredoxin, that contains an active site with two cysteine residues. Upon reduction of the ribose to the 2 -deoxyri-bose, the thioredoxin is oxidized to the disulfide. The thioredoxin(SS) made during the reaction is recycled by reduction with NADPH by the enzyme thioredoxin reductase. [Pg.242]


See other pages where Cysteine residues oxidation is mentioned: [Pg.10]    [Pg.107]    [Pg.10]    [Pg.107]    [Pg.239]    [Pg.263]    [Pg.339]    [Pg.74]    [Pg.2059]    [Pg.96]    [Pg.97]    [Pg.97]    [Pg.1148]    [Pg.13]    [Pg.27]    [Pg.120]    [Pg.362]    [Pg.396]    [Pg.424]    [Pg.427]    [Pg.153]    [Pg.137]    [Pg.181]    [Pg.461]    [Pg.305]    [Pg.62]    [Pg.221]    [Pg.615]    [Pg.181]    [Pg.1234]    [Pg.74]    [Pg.76]    [Pg.275]    [Pg.38]    [Pg.130]    [Pg.216]    [Pg.23]    [Pg.698]    [Pg.753]    [Pg.758]    [Pg.759]    [Pg.17]    [Pg.28]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Cysteine oxidation

Cysteine residue

Oxidation of cysteine residues

Oxidation residues

© 2024 chempedia.info