Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cysteine decarboxylation

Original Synthesis. The first attempted synthesis of i7-biotin in 1945 afforded racemic biotin (Fig. I). In this synthetic pathway, L-cysteine [52-90-4] (2) was converted to the methyl ester [5472-74-2] (3). An intramolecular Dieckmaim condensation, during which stereochemical integrity was lost, was followed by decarboxylation to afford the thiophanone [57752-72-4] (4). Aldol condensation of the thiophanone with the aldehyde ester [6026-86-4]... [Pg.28]

DNA sequence indicated that AMDase contains four cysteine residues located at 101, 148, 171 and 188 from amino terminal (Eig. 9). At least one of these four is estimated to play an essential role in the decarboxylation. The most effective way to determine which Cys is responsible to enzyme activity will be site-directed mutagenesis. To determine which amino acid should be introduced in place of active Cys, its role was estimated as illustrated in Eig. 13. One possibility is that... [Pg.315]

The tertiary structure of glutamate racemase has already been resolved and it has also been shown that a substrate analog glutamine binds between two cysteine residues. These data enabled us to predict that the new proton-donating amino acid residue should be introduced at position 74 instead of Gly for the inversion of enantioselectivity of the decarboxylation reaction. [Pg.318]

While sulfur-free amino acids are broken down to amines via decarboxylation, the sulfur-containing amino acids such as cysteine can undergo more complex reactions. Fisher and Scott suggest that, because cysteine produces a powerful reducing aminoketone, hydrogen sulfide could be produced by reducing mercaptoacetaldehyde or cysteine.2... [Pg.15]

Alternatively, hydrogen sulfide could be produced alongside ammonia and acetaldehyde by the breakdown of the mercaptoimino-enol intermediate of the decarboxylation reaction of the cysteine-dicarbonyl condensation product. Fisher also points out that hydrogen sulfide is forms many odiferous an hence intensely flavoured products.2 Cysteine is important as it is one of the major sources of sulfur. [Pg.16]

In the previous studies using inhibitors and additives, it became clear that AMDase requires no cofactors, such as biotin, coenzyme A and ATP. It is also suggested that at least one of four cysteine residues plays an essential role in asymmetric decarboxylation. One possibility is that the free SH group of a cysteine residue activates the substrate in place of coenzyme A. Aiming at an approach to the mechanism of the new reaction, an active site-directed inhibitor was screened and its mode of interaction was studied. Also, site-directed mutagenesis of the gene coding the enzyme was performed in order to determine which Cys is located in the active site. [Pg.12]

So far, it has become clear that Cys plays an essential role in the asymmetric decarboxylation of disubstituted malonic acids. It follows that studies of reaction kinetics and stereochemistry will serve to disclose the role of the specific cysteine residue and the reaction intermediate. [Pg.18]

Acyl residues are usually activated by transfer to coenzyme A (2). In coenzyme A (see p. 12), pantetheine is linked to 3 -phos-pho-ADP by a phosphoric acid anhydride bond. Pantetheine consists of three components connected by amide bonds—pantoic acid, alanine, and cysteamine. The latter two components are biogenic amines formed by the decarboxylation of aspartate and cysteine, respectively. The compound formed from pantoic acid and p-alanine (pantothenic acid) has vitamin-like characteristics for humans (see p. 368). Reactions between the thiol group of the cysteamine residue and carboxylic acids give rise to thioesters, such as acetyl CoA. This reaction is strongly endergonic, and it is therefore coupled to exergonic processes. Thioesters represent the activated form of carboxylic adds, because acyl residues of this type have a high chemical potential and are easily transferred to other molecules. This property is often exploited in metabolism. [Pg.106]

Other than water, protein is the major constituent of meat averaging nearly 21% in heef or chicken meat, with fat varying fiom 4.6 to 11.0% in beef and fiom 2.7 to 12.6% in chickoi. The principal radiolytic reactions of aqueous solutions of aliphatic amino acids are reductive deamination and decarboxylation. Alanine yields NH3, pyruvic add, acetaldehyde, propionic acid, CO2, H2, and ethylamine (6). Sulfur-containing amino adds are espedally sensitive to ionizing radiation. Cysteine can be oxidized to cystine by the hydroxyl radical or it can react with the hydrated electron and produce... [Pg.295]

When present in excess methionine is toxic and must be removed. Transamination to the corresponding 2-oxoacid (Fig. 24-16, step c) occurs in both animals and plants. Oxidative decarboxylation of this oxoacid initiates a major catabolic pathway,305 which probably involves (3 oxidation of the resulting acyl-CoA. In bacteria another catabolic reaction of methionine is y-elimination of methanethiol and deamination to 2-oxobutyrate (reaction d, Fig. 24-16 Fig. 14-7).306 Conversion to homocysteine, via the transmethylation pathway, is also a major catabolic route which is especially important because of the toxicity of excess homocysteine. A hereditary deficiency of cystathionine (3-synthase is associated with greatly elevated homocysteine concentrations in blood and urine and often disastrous early cardiovascular disease.299,307 309b About 5-7% of the general population has an increased level of homocysteine and is also at increased risk of artery disease. An adequate intake of vitamin B6 and especially of folic acid, which is needed for recycling of homocysteine to methionine, is helpful. However, if methionine is in excess it must be removed via the previously discussed transsulfuration pathway (Fig. 24-16, steps h and z ).310 The products are cysteine and 2-oxobutyrate. The latter can be oxidatively decarboxylated to propionyl-CoA and further metabolized, or it can be converted into leucine (Fig. 24-17) and cysteine may be converted to glutathione.2993... [Pg.1389]

Fig. 24-25), another component of nervous tissue. Cysteic acid can arise in an alternative way from O-acetylserine and sulfite (reaction 1, Fig. 24-25), and taurine can also be formed by decarboxylation of cysteine sulfinic acid to hypotaurine and oxidation of the latter (reaction m). Cysteic acid can be converted to the sulfolipid of chloroplasts (p. 387 Eq. 20-12). [Pg.1408]

Another route of metabolism for cysteine sulfinic acid is transamination to 3-sulfinylpyruvate, a compound that undergoes ready loss of S02 in a reaction analogous to the decarboxylation of oxaloacetate (reaction o, Fig. 24-25). This probably represents one of the major routes by which sulfur is removed from organic compounds in the animal body. However, before being excreted the sulfite must be oxidized to sulfate by the Mo-containing sulfite oxidase. The essentiality of sulfite oxidase is evidenced by the severe neurological defect observed in its absence (Chapter 16). [Pg.1408]

Figure 25-6 Postulated pathways for synthesis of the black pigment melanin and pigments (phaeomelanins) of reddish hair and feathers. Dopachrome reacts in two ways, with and without decarboxylation. The pathway without decarboxylation is indicated by green arrows. To the extent that this pathway is followed the green carboxylate groups will remain in the polymer. The black eumelanin is formed by reactions at the left and center while the reddish phaeomelanin is derived from polymers with cysteine incorporated by reactions at the right. Figure 25-6 Postulated pathways for synthesis of the black pigment melanin and pigments (phaeomelanins) of reddish hair and feathers. Dopachrome reacts in two ways, with and without decarboxylation. The pathway without decarboxylation is indicated by green arrows. To the extent that this pathway is followed the green carboxylate groups will remain in the polymer. The black eumelanin is formed by reactions at the left and center while the reddish phaeomelanin is derived from polymers with cysteine incorporated by reactions at the right.
The oxidation of co-ordinated cysteine ligands may also give a variety of products. The most usually encountered reactions involve the formation of sulfenate or sulfinate as above however, in some cases disulfide formation occurs in preference to oxygen transfer. In the example shown in Fig. 9-39, the formation of the disulfide is accompanied by decarboxylation of the amino acid ... [Pg.285]

Probably the most important reactant in the formation of volatile meat flavor compounds is hydrogen sulfide. It can be formed by several pathways during meat cookery, but one mechanism is Strecker degradation of cysteine in the presence of a diketone as established by Kobayashi and Fujimaki (29). The cysteine condenses with the diketone and the product in turn decarboxylates to amino carbonyl compounds that can be degraded to hydrogen sulfide, ammonia and acetaldehyde. These become very reactive volatiles for the formation of many flavor compounds in meat and other foods. [Pg.173]

Many additional examples of the elucidation of prostereoisomerism in biochemical reactions could be given, for example the elegant elucidation by Comforth and coworkers 111, n8,137) of the biosynthesis of squalene, which was recognized by the Nobel prize in chemistry in 1975, or the recent studies of the enzymatic decarboxylation of tyrosine 138) and histidine 139) and of the condensation of homoserine with cysteine to give lanthionine 140), but the examples already provided should illustrate the principles and techniques involved in such studies. [Pg.57]

Heterocyclic compounds are dominant among the aroma compounds produced in the Maillard reaction, and sulfur-containing heterocyclics have been shown to be particularly important in meat-like flavors. In a recent review, MacLeod (6) listed 78 compounds which have been reported in the literature as possessing meaty aromas seven are aliphatic sulfur compounds, the other 71 are heterocyclic of which 65 contain sulfur. The Strecker degradation of cysteine by dicarbonyls is an extremely important route for the formation of many heterocyclic sulfur compounds hydrogen sulfide and mercaptoacetaldehyde are formed by the decarboxylation and deamination of cysteine and provide reactive intermediates for interaction with other Maillard products. [Pg.443]

As already pointed out, cysteine may be metabolized to pyruvate, or it can be oxidized to cystine. It can also be converted to taurine, NH3+-CH2-CH2-S03. Taurine is obtained by oxidizing the -SH group of cysteine and losing the carboxyl group of decarboxylation. Taurine is quite abundant in most tissues and is said to be the most abundant "amino acid" of the human organism. One of its functions is to conjugate primary bile acids (Chapter 19). [Pg.563]


See other pages where Cysteine decarboxylation is mentioned: [Pg.604]    [Pg.604]    [Pg.493]    [Pg.308]    [Pg.662]    [Pg.173]    [Pg.103]    [Pg.205]    [Pg.299]    [Pg.301]    [Pg.218]    [Pg.238]    [Pg.238]    [Pg.238]    [Pg.545]    [Pg.296]    [Pg.17]    [Pg.12]    [Pg.790]    [Pg.117]    [Pg.117]    [Pg.121]    [Pg.182]    [Pg.263]    [Pg.94]    [Pg.1398]    [Pg.1434]    [Pg.1722]    [Pg.308]    [Pg.139]    [Pg.139]    [Pg.209]    [Pg.320]   


SEARCH



© 2024 chempedia.info