Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopentenone Pauson-Khand reaction

Keywords Catalysis Cycloaddition Cyclopentenones Pauson-Khand reaction Transition metal complexes... [Pg.208]

Acetylenes can undergo a number of thermal and transition metal promoted cycloaddition reactions. Besides the [2 + 2 + 2] cycloaddition (see Sect. 5) the reaction of acetylenes with late transition metal (so-called Fischer ) carbenes is noteworthy for the synthesis of highly and regioselectively functionalized naphthalene derivatives (Dotz reaction), while the co-cycloaddition of acetylenes with alkenes and carbon monoxide gives cyclopentenones (Pauson-Khand reaction) [159,160]. [Pg.81]

The reaction of an alkyne 1 and an alkene 2 in the presence of dicobaltoctacar-bonyl to yield a cyclopentenone 3 is referred to as the Pauson-Khand reaction Formally it is a [2 + 2 + 1 ]-cycloaddition reaction. The dicobaltoctacarbonyl acts as coordinating agent as well as a source of carbon monoxide. [Pg.223]

The reaction of alkenes with alkenes or alkynes does not always produce an aromatic ring. An important variation of this reaction reacts dienes, diynes, or en-ynes with transition metals to form organometallic coordination complexes. In the presence of carbon monoxide, cyclopentenone derivatives are formed in what is known as the Pauson-Khand reaction The reaction involves (1) formation of a hexacarbonyldicobalt-alkyne complex and (2) decomposition of the complex in the presence of an alkene. A typical example Rhodium and tungsten ... [Pg.1091]

The intermolecular Pauson-Khand reaction of the resulting S/P-cobalt complexes with norbornadiene was studied under thermal and A -oxide activation conditions. Thus, heating the diastereomerically pure complex (R = Ph, R = Cy) with ten equivalents of norbornadiene at 50 °C in toluene afforded the corresponding exo-cyclopentenone in a quantitative yield and with an enantio-selectivity of 99% ee. Under similar conditions, the analogous trimethylsilyl complex (R = TMS, R = Cy) afforded the expected product in a high yield but with a lower enantioselectivity of 57% ee. In order to increase this enantio-selectivity, these authors performed this reaction at room temperature in dichloromethane as the solvent and in the presence of NMO, which allowed an enantioselectivity of 97% ee to be reached. These authors assumed that the thermal activation promoted the isomerisation of the S/P ligand leading to a nonstereoselective process. [Pg.345]

The Pauson-Khand reaction (PKR) is an efficient method to synthesize cyclopentenones.105 The reaction is usually carried out in organic solvent. The first aqueous Pauson-Khand reaction was reported by... [Pg.128]

Co-catalyzed transformations are concerned mainly with the [2+2+2] cycloadditions of three alkyne groups to give arenes. Another important reaction is the [2+2+1] cycloaddition of alkynes, alkenes and CO to give cyclopentenones, which is the well-known as Pauson-Khand reaction [272]. [Pg.458]

The Pauson-Khand reaction is the Co-induced formation of cyclopentenones from ene-ynes and CO. One impressive example of a domino Pauson-Khand process is the synthesis of fenestrane 6/4-15, as reported by Keese and colleagues [278]. The transformation is initiated by a double Grignard reaction of 4-pentynoic acid 6/4-12, followed by protection of the formed tertiary hydroxyl group to give 6/4-13. The Co-induced polycyclization of 6/4-13 led directly to the fenestrane 6/4-15... [Pg.459]

The [2+2+1] cycloaddition of an alkene, an alkyne, and carbon monoxide is known as the Pauson-Khand reaction and is often the method of choice for the preparation of complex cyclopentenones [155]. Groth and coworkers have demonstrated that Pauson-Khand reactions can be carried out very efficiently under microwave heating conditions (Scheme 6.75 a) [156]. Taking advantage of sealed-vessel technology, 20 mol% of dicobalt octacarbonyl was found to be sufficient to drive all of the studied Pauson-Khand reactions to completion, without the need for additional carbon monoxide. The carefully optimized reaction conditions utilized 1.2 equivalents of... [Pg.159]

In a similar manner, Brummond et al. demonstrated the first total synthesis of 15-deoxy-A12,14-prostaglandin J2 (162) that was completed using a silicon-tethered allenic Pauson-Khand reaction to obtain the highly unsaturated cyclopentenone substructure [36]. Treatment of alkynylallene 160 with molybdenum hexacarbonyl and dimethyl sulfoxide affords the desired cycloadduct 161 in 43% yield (Scheme 19.30). Trienone 161 was obtained as a 2 1 Z E mixture of isomers in which the Z-isomer could be isomerized to the desired E-isomer. The silicon tether was cleaved and the resulting product converted to 15-deoxy-A12,14-prostaglandin J2 (162). [Pg.1062]

Abstract The transition metal mediated conversion of alkynes, alkenes, and carbon monoxide in a formal [2 + 2+1] cycloaddition process, commonly known as the Pauson-Khand reaction (PKR), is an elegant method for the construction of cyclopentenone scaffolds. During the last decade, significant improvements have been achieved in this area. For instance, catalytic PKR variants are nowadays possible with different metal sources. In addition, new asymmetric approaches were established and the reaction has been applied as a key step in various total syntheses. Recent work has also focused on the development of CO-free conditions, incorporating transfer carbonylation reactions. This review attempts to cover the most important developments in this area. [Pg.172]

An important procedure for the synthesis of cyclopentenones is the so-called Pauson-Khand reaction, which constitutes a formal [2 + 2 + 1] cycloaddition of an alkene, an alkyne, and carbon monoxide. Due to the increase in structural diversity of the available starting materials, the reaction has become an attractive target for scientific investigations [1-8]. The first successful example was reported by Pauson, Khand et al [9] in 1973 for the conversion of norbornene with the phenylacetylene-hexacarbonyldicobalt complex to give the corresponding cyclopentenone in 45% yield (Eq. 1). [Pg.173]

Recent developments have impressively enlarged the scope of Pauson-Khand reactions. Besides the elaboration of strategies for the enantioselective synthesis of cyclopentenones, it is often possible to perform PKR efficiently with a catalytic amount of a late transition metal complex. In general, different transition metal sources, e.g., Co, Rh, Ir, and Ti, can be applied in these reactions. Actual achievements demonstrate the possibility of replacing external carbon monoxide by transfer carbonylations. This procedure will surely encourage synthetic chemists to use the potential of the PKR more often in organic synthesis. However, apart from academic research, industrial applications of this methodology are still awaited. [Pg.183]

Conversion of a Co2(CO)6-alkyne complex into a cyclopentenone is the Pauson-Khand reaction. It proceeds by loss of CO from one Co to make a 16-electron complex, coordination and insertion of the C6=C7 K bond into the C2-Co bond to make the C2-C6 bond and a C7-Co bond, migratory insertion of CO into the C7-Co bond to make the C7-C8 bond, reductive elimination of the C1-C8 bond from Co, and decomplexation of the other Co from the C1=C2 k bond. The mechanism is discussed in the text (Section B.l.f). [Pg.192]

The Pauson-Khand reaction involves the aimulation of an alkene, an alkyne and carhon monoxide to yield cyclopentenones. Recently, it was shown that in this respect polymer-hound species (60) is an effective catalyst which may be generated by heating Co2(CO)g with polystyrene-bound phosphine (Scheme 4.37) [129]. [Pg.233]

Transition-metal-promoted cycloaddition is of much interest as a powerful tool for synthesis of carbocyclic stmcture in a single step. Utilization of carbon monoxide as a component of the cycloaddition reaction is now widely known as the Pauson-Khand reaction, which results in cyclopentenone formation starting from an alkyne, an alkene, and carbon monoxide mediated by cobalt catalyst. Although mechanistic understanding is limited, a commonly accepted mechanism is shown in Scheme 4.16. Formation of dicobalt-alkyne complex followed by alkene... [Pg.115]

As dibromocyclopropanes can easily be synthesized by reacting a cycloalkene with bromoform in the presence of a base [16], this method affords an alternative procedure for cyclopentenone annelation onto cyclic alkenes. It should be noted that in the Pauson-Khand reaction, which is probably the most direct cyclopentenone annelation reaction, the reaction using cyclohexene gives the product only in very low yield [11,17]. Also, the position of the original alkynyl substituent on the product double bond is opposite to that in the present reaction. Thus the two reactions are complementary. [Pg.76]

Several reports have appeared on the effect of additives on the Pauson-Khand reaction employing an alkyne-Co2(CO)6 complex. For example, addition of phosphine oxide improves the yields of cyclopentenones 119], while addition of dimethyl sulfoxide accelerates the reaction considerably [20]. Furthermore, it has been reported that the Pauson-Khand reaction proceeds even at room temperature when a tertiary amine M-oxide, such as trimethylamine M-oxide or N-methylmorpholine M-oxide, is added to the alkyne-Co2(CO)6 complex in the presence of alkenes [21]. These results suggest that in the Pauson-Khand reaction generation of coordinatively unsaturated cobalt species by the attack of oxides on the carbonyl ligand of the alkyne-Co2(CO)6 complex [22] is the key step. With this knowledge in mind, we examined further the effect of various other additives on the reaction to obtain information on the mechanism of this rearrangement. [Pg.78]

Passerini Reaction, 65, 1 Pauson-Khand reaction to prepare cyclopentenones, 40, 1 Payne rearrangement, 60, 1 Pechmann reaction, 7, 1 Peptides, synthesis of, 3, 5 12, 4 Peracids, epoxidation and hydroxylation with, 7, 7... [Pg.592]

Application of the intramolecular Pauson-Khand reaction to enynes derived from salicylaldehyde leads to the cyclopentenone 27 (Scheme 13) <99TL2817>. Intramolecular Diels-Alder reactions feature in syntheses of the bipyridyl 28 <99CC793> and benzopyrano[4,3-b]quinolines <99JCR254>. [Pg.323]

Ethynylcyclopropanes, like normal acetylenes, react with dicobalt octacarbonyl in ether to form stable dinuclear cluster-like hexacarbonyl complexes (equation 170)236. The complex with l-chIoro-2,2,3,3-tetramethylethynylcyclopropane reacts stereo- and regioselec-tively with norbomene in a typical Pauson-Khand reaction to give the exn-2-cyclopropyl substituted cyclopentenone (equation 171). Similarly, the reaction of 2-ethoxycyclo-propylacetylene with cyclopentene in the presence of Co2(CO)8 under CO gave 3-(2-ethoxycyclopropyl)-cw-bicyclo[3.3.0]oct-3-en-2-one (equation 172)242. [Pg.563]

The [2+2+1] cycloaddition of an alkene, an alkyne and carbon monoxide is commonly known as the Pauson-Khand reaction. This transformation has been adopted many times in the synthesis of complex natural products and related compounds, which contain a cyclopentenone moiety, for example, prostaglandins. Two independent reports of this reaction appeared almost simultaneously in late 2002 by Iqbal and co-workers25 and Fisher and co-workers26, respectively. They not only used very similar substrate systems in their studies, but they also reached very similar conclusions Toluene was found to be the preferred solvent in this reaction, even though it is a very poor microwave absorber. A reaction time between 5 and 10 min, using dicob alto ctacar-bonyl or dicobalthexacarbonyl as the carbon monoxide source, and a temperature of 100-120°C resulted in high yields of the products. Fisher and co-workers used 20 mol% Co2(CO)8 and cyclohexylamine as an additive (Scheme 5.12), since this system had been used previously in order to allow a catalytic reaction. Iqbal and co-workers did not use cyclohexylamine, but instead used 1 equiv. of the carbon monoxide (Co2(CO)6) source. In both reports, the products were formed in 40-70% yield. [Pg.112]

The iron-mediated [2 + 2 + 1]-cycloaddition to cyclopentadienones has been successfully applied to the synthesis of corannulene [24] and the yohimbane alkaloid ( )-demethoxycarbonyldihydrogambirtannine [25]. A [2 + 2 + l]-cydoaddition of an alkene, an alkyne and carbon monoxide mediated by pentacarbonyliron, related to the well-known Pauson-Khand reaction [26], has also been described to afford cyclopentenones [27]. [Pg.6]

A further addition-cyclization process that leads to complex fused-ring systems is the dicobalt octacarbonyl-mediated Pauson-Khand reaction which, applied to enynes 209 and 211, gives respectively and in modest yields the tricyclic cyclopentenones 210215 and 212.216... [Pg.95]

Synthesis of Cyclopentenones by the Reaction of Alkyne, Alkene and Carbon Monoxide (Pauson-Khand Reaction)... [Pg.250]

Insertion of CO to the metallacyclopentenes 197 and 198 formed from enynes and metal complexes offers a useful synthetic route to the cyclopentenone derivatives 199 and 200. This [2+2+1] cycloaddition mediated by Co2(CO)8 is called the Pauson-Khand reaction [80], Both inter- and intramolecular versions are known. [Pg.250]

Formation of the tricyclo[3.3.0.0.]decane 209 by the reaction of [3.2.0]bicyclo-heptadiene 205 with propyne complex (206) is an example [81], The Pauson Khand reaction is explained by the following simplified mechanism. At first the oxidative cyclization of 205 and 206 generates the cobaltacyclopentene 207, to which insertion of CO gives 208. Finally, reductive elimination of208 affords the cyclopentenone 209. [Pg.251]

The Pauson-Khand reaction, promoted by (CO)3Mo(DMF)3, has been found to take place under very mild conditions in the absence of any promoter. High yields of the adducts were obtained in the cyclization of a wide variety of functionalized 1,6- and 1,7-enynes. Enynes bearing electron-withdrawing groups at the alkene terminus proved to be particularly good substrates.121 The exclusive formation of cyclopentenones was observed in the molybdenum hexacarbonyl (10 mol%)-catalysed Pauson-Khand reactions of 1,6-allenynes under 1 atm of CO (balloon) in excellent yields.122... [Pg.310]


See other pages where Cyclopentenone Pauson-Khand reaction is mentioned: [Pg.3282]    [Pg.519]    [Pg.519]    [Pg.3281]    [Pg.3282]    [Pg.519]    [Pg.519]    [Pg.3281]    [Pg.162]    [Pg.284]    [Pg.79]    [Pg.91]    [Pg.234]    [Pg.251]    [Pg.258]    [Pg.262]    [Pg.79]    [Pg.13]   
See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Cyclopentenone synthesis Pauson-Khand reaction

Khand

Pauson

Pauson-Khand

Pauson-Khand reaction

© 2024 chempedia.info