Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopentadiene, methyl acrylate

The Diels-Alder reaction provides us with a tool to probe its local reaction environment in the form of its endo-exo product ratio. Actually, even a solvent polarity parameter has been based on endo-exo ratios of Diels-Alder reactions of methyl acrylate with cyclopentadiene (see also section 1.2.3). Analogously we have determined the endo-exo ratio of the reaction between 5.1c and 5.2 in surfactant solution and in a mimber of different organic and acpieous media. These ratios are obtained from the H-NMR of the product mixtures, as has been described in Chapter 2. The results are summarised in Table 5.3, and clearly point towards a water-like environment for the Diels-Alder reaction in the presence of micelles, which is in line with literature observations. [Pg.137]

There are probably several factors which contribute to determining the endo exo ratio in any specific case. These include steric effects, dipole-dipole interactions, and London dispersion forces. MO interpretations emphasize secondary orbital interactions between the It orbitals on the dienophile substituent(s) and the developing 7t bond between C-2 and C-3 of the diene. There are quite a few exceptions to the Alder rule, and in most cases the preference for the endo isomer is relatively modest. For example, whereas cyclopentadiene reacts with methyl acrylate in decalin solution to give mainly the endo adduct (75%), the ratio is solvent-sensitive and ranges up to 90% endo in methanol. When a methyl substituent is added to the dienophile (methyl methacrylate), the exo product predominates. ... [Pg.638]

Wulff and coworkers have applied their aluminum catalyst 2 containing a vaulted biphenanthrol ligand (VAPOL, Section 2.1) to the Diels-Alder reaction between methyl acrylate and cyclopentadiene [25] (Scheme 1.32). In this Diels-Alder reaction auto-induction is observed, because of a cooperative interaction between the product... [Pg.23]

Evans s bis(oxazolinyl)pyridine (pybox) complex 17, which is effective for the Diels-Alder reaction of a-bromoacrolein and methacrolein (Section 2.1), is also a suitable catalyst for the Diels-Alder reaction of acrylate dienophiles [23] (Scheme 1.33). In the presence of 5 mol% of the Cu((l )-pybox)(SbF5)2 catalyst with a benzyl substituent, tert-butyl acrylate reacts with cyclopentadiene to give the adduct in good optical purity (92% ee). Methyl acrylate and phenyl acrylate underwent cycloadditions with lower selectivities. [Pg.24]

One of the earliest solvent polarity scales is Person s D scale. This scale is based on the endojexo ratio of the Diels-Alder reaction between cyclopentadiene and methyl acrylate (Figure 3.5-2, O = logio endo/exo). This reaction has been conducted in a number of ionic liquids, giving values in the 0.46-0.83 range [26]. [Pg.100]

Figure 3.5-2 Diels-Alder cycloaddition between cyclopentadiene and methyl acrylate. Figure 3.5-2 Diels-Alder cycloaddition between cyclopentadiene and methyl acrylate.
Diels-Alder reactions Neutral ionic liquids have been found to be excellent solvents for the Diels-Alder reaction. The first example of a Diels-Alder reaction in an ionic liquid was the reaction of methyl acrylate with cyclopentadiene in [EtNH3][N03] [40], in which significant rate enhancement was observed. Howarth et al. investigated the role of chiral imidazolium chloride and trifluoroacetate salts (dissolved in dichloromethane) in the Diels-Alder reactions between cyclopentadiene and either crotonaldehyde or methacroline [41]. It should be noted that this paper describes one of the first examples of a chiral cationic ionic liquid being used in synthesis (Scheme 5.1-17). The enantioselectivity was found to be < 5 % in this reaction for both the endo (10 %) and the exo (90 %) isomers. [Pg.182]

A similar study performed by Welton and co-workers studied the rate and selec-tivities of the Diels-Alder reaction between cyclopentadiene and methyl acrylate in a number of neutral ionic liquids [44]. It was found that endo. exo ratios decreased slightly as the reaction proceeded, and were dependent on reagent concentration and ionic liquid type. Subsequently, they went on to demonstrate that the ionic liquids controlled the endo. exo ratios through a hydrogen bond (Lewis acid) interaction with the electron-withdrawing group of the dienophile. [Pg.183]

Pagni and coworkers [18] have conducted in-depth investigations on the cycloadditions of cyclopentadiene with methyl acrylate on alumina of varing activity (200 300 400 800 °) showing that the diastereoselectivity of the... [Pg.147]

Good yields and high diastereoselectivities were obtained by using zeolites in combination with Lewis-acid catalyst [21]. Table 4.7 illustrates some examples of Diels-Alder reactions of cyclopentadiene, cyclohexadiene and furan with methyl acrylate. Na-Y and Ce-Y zeolites gave excellent results for the cycloadditions of carbocyclic dienes, and combining these zeolites with anhydrous ZnBr2 further enhanced the endo diastereoselectivity of the reaction. An exception is the cycloaddition of furan that occurred considerably faster and with better yield, in comparison with the classic procedure [22], when performed in the presence of sole zeolites. [Pg.148]

The micellar effect on the endo/exo diastereoselectivity of the reaction has also been investigated. The endo/exo ratio of the reaction of cyclopentadiene with methyl acrylate is affected little (compared to water) by the use of SDS and CTAB [73b], while a large enhancement was observed in SDS solution when n-butyl acrylate was the dienophile used [74]. The ratio of endo/exo products in the reaction of 1 with 113c is not affected by CTAB, SDS and C12E7 [72a]. [Pg.178]

The aqueous medium also has beneficial effects on the diastereoselectivity of the Diels-Alder reactions. The endo addition that occurs in the classical cycloadditions of cyclopentadiene with methyl vinyl ketone and methyl acrylate is more favored when the reaction is carried out in aqueous medium than when it is performed in organic solvents (Table 6.4) [2b, c]. [Pg.255]

Similar results were obtained [55] for the Diels-Alder reaction between cyclopentadiene and methyl acrylate carried out in [EMIM]BF4 at 20 °C for 72 h. In [EMIMjX (X = OTf, NO3, PFg) the reaction yields were lower [55]. The best yields and the highest endo/exo selectivity were obtained in [FtNHsJNOs [56],... [Pg.280]

Chloroaluminate ionic liquids (typically a mixture of a quaternary ammonium salt with aluminum chloride see Table 6.9) exhibit at room temperature variable Lewis acidity and have been successfully used as solvent/catalyst for Diels-Alder reactions [57]. The composition of chloroaluminate ionic liquids can vary from basic ([FMIM]C1 or [BP]C1 in excess) to acidic (AICI3 in excess) and this fact can be used to affect the reactivity and selectivity of the reaction. The reaction of cyclopentadiene with methyl acrylate is an example (Scheme 6.31). [Pg.280]

The diastereoselection of the Diels Alder reaction of methyl acrylate with cyclopentadiene was investigated [74] in microemulsions prepared with isooctane oil, CTAB as surfactant and 1-butanol as cosurfactant, and the results were compared with those found in pure solvents and water (Table 6.12). In emulsions rich in 1-butanol and formamide (entries 1 and 4) the reaction was slow (72 h) and the diastereoselectivity was practically the same as that... [Pg.282]

Table 6.12 Diastereoselectivity of Diels-Alder reaction of methyl acrylate with cyclopentadiene in formamide microemulsion and pure solvents... Table 6.12 Diastereoselectivity of Diels-Alder reaction of methyl acrylate with cyclopentadiene in formamide microemulsion and pure solvents...
The diastereoselectivity of the cycloaddition of cyclopentadiene with methyl acrylate in SC-CO2 at 40 °C and subcritical liquid CO2 at 22 °C is practically the same endojexo = 75 25 and 76 24 respectively) and is comparable to that found in hydrocarbon solvents (73 27 and 75 25 in heptane and cyclohexane, respectively). This shows that CO2, in these states, behaves like an apolar solvent with very low polarizability [82]. [Pg.286]

The Diels-Alder reaction of cyclopentadiene with methyl acrylate in methanol was studied by Berson et al. [72] under conventional conditions, and shown to give a mixture of the endo and exo isomers 48 and 49 (Scheme 4.26). [Pg.136]

Ionic liquids are excellent solvents for the Diels-Alder reaction providing significant increases in rate and selectivity. Diels-Alder reactions conducted in chloroa-luminate ionic liquids show considerable promise. For example, the endo.exo ratio for the reaction between cyclopentadiene and methyl acrylate (Scheme 7.5) could be varied by changing the composition of the ionic liquid (see Chapter 4) [11]. Although a high yield was obtained, in order to extract the products it was necessary to quench the ionic liquid in water. This is a considerable disadvantage and for this reason neutral ionic liquids have been the focus of subsequent attention. [Pg.153]

It has been shown that Diels-Alder reactions can be carried out successfully in a range of ionic liquids [12], As highly ordered H-bonding solvents, ionic liquids have the potential for dramatic effects as solvents for such reactions. The range of polarities which can be spanned by varying the cation or anion may be exploited and it has been shown that the endo exo ratio for the reaction between cyclopentadiene and methyl acrylate (Scheme 7.5) is dependent on the polarity of the ionic liquid used [13] (Table 7.2). When the reactions were carried out in a range of ionic liquids, the endo exo values were shown to correlate with the polarity as measured by the Ej scale. [Pg.153]

Table 7.2 Endo exo ratios for the reaction between methyl acrylate and cyclopentadiene in a range of ionic liquids [13]... Table 7.2 Endo exo ratios for the reaction between methyl acrylate and cyclopentadiene in a range of ionic liquids [13]...
The asymmetric Diels-Alder reaction of cyclopentadiene with methyl acrylate lib has been studied using several types of catalysts. The asymmetric induction of various... [Pg.406]

Hawkins and Loren225 reported simple chiral arylalkyldichloroborane catalysts 352 which were effectively used in the cycloadditions of acrylates lib and 350 to cyclopen-tadiene, affording adducts 351a and 351b, respectively (equation 99). A crystal structure of the molecular complex between methyl crotonate and the catalyst allowed the authors to rationalize the outcome of the reaction. One face of methyl crotonate is blocked by tt-tt donor-acceptor interactions, as becomes clear from the structure of complex 353. The cycloadduct of methyl acrylate and cyclopentadiene (5 equivalents) was obtained with 97% ee, using the same catalyst. Three years later, the authors reported that the cycloadduct was obtained with 99.5% ee in the presence of 10 equivalents of cyclopentadiene226. [Pg.411]

Furthermore, regioselectivities89 as well as the diastereofacial selectivities90,91 may be increased in the presence of Lewis acids (Table 8). For instance, AICI3 OEt2 improves the ewrfo-selectivity of the reaction of cyclopentadiene and methyl acrylate from 82% to 98%87. The astonishing rate accelerations, the improved yields and higher selectivities make the Lewis acid catalysed Diels-Alder reaction one of the most important organic reactions. [Pg.1045]

This explains the experimentally confirmed predictions that polar solvents attenuate the endo-preference, while non-polar solvents increase the cwdo-selectivity of Diels-Alder reactions. The strong correlation between the polarity of the solvent and the endo/exo ratios in the Diels-Alder reaction led to the empirical polarity scale 2 = log endo/exo) using the reaction of cyclopentadiene with methyl acrylate as the standard144. The importance of solvent polarity has also been discerned on the basis of experimental142 and theoretical investigations145. Dependence on the polarizability was also noted146. [Pg.1052]

Density functional theory has been used to investigate the Diels-Alder reactions of triazolinedione with s-cis- and. y-fran -butadiene. " Combined quantum mechanics-molecular mechanics calculations have been used to investigate the asymmetric Diels-Alder reaction of cyclopentadiene with the complex dienophiles AICI3-methyl acrylate and methoxyaluminium dichloride-acrolein.Equilibrium constants have been determined for the molecular complexes formed from 1-alkyl-1-(2-naphthyl)ethenes and 1-vinylnaphthalene with TCNE in C1(CH2)2C1 at 27.1 °C ... [Pg.476]

Some chiral 1,3,2-dioxastannolanes were used as catalysts in asymmetric Diels-Alder reactions of cyclopentadiene with methyl acrylate <90JCR(S)278>. A-Alkenyl- and -cycloalkenyl 1,3,2-oxaza-stannolanes, generated in situ from chiral amino alcohols, gave optically active 2-substituted aldehydes and ketones in modest to high chemical and optical yields after alkylation with methyl acrylate or acrylonitrile (which is usual for enamines) and subsequent hydrolysis <85CC504,85JOC3863>. [Pg.896]

The potential activation of different Lewis acid catalysts and their load effect when used in combination with this solvent were explored, in order to determine the improvement of rates and selectivity to the endo and exo isomers. The list of Lewis acid catalysts included Li(OTf), Li(NTf2), Znl2, AICI3, BF3, HOTf, HNTf2, Ce(0Tf)4 5H20, Y(OTf)3, Sc(OTf)3, Sc(NTf2) and a blank without any Lewis acid. The reaction conditions were as follows 2.2 mmol of cyclopentadiene + 2.0 mmol of dienophile + 0.2 mol% of catalyst in 2 mL [hmim][BF4]. When no catalyst was added, the two ketones (R =Me-C=0 R2 = R3 = H and Ri=Et-C=0 R2 = R3 = H) showed modest activity ( 50% in 1 h) with endojexo selectivity = 85/15. Whereas acrolein showed modest activity (59% conversion in 2 h), methacrolein and crotonaldehyde were inert without a Lewis acid catalyst. Acrylonitrile and methyl acrylate underwent low conversions in 1 h (16-17%) whereas, N-phenylmaleimide, maleic anhydride and 2-methyl-1,4-benzoquinone showed complete reaction in 5 min with high endo isomer yields. [Pg.162]


See other pages where Cyclopentadiene, methyl acrylate is mentioned: [Pg.708]    [Pg.106]    [Pg.110]    [Pg.304]    [Pg.181]    [Pg.708]    [Pg.106]    [Pg.110]    [Pg.304]    [Pg.181]    [Pg.11]    [Pg.12]    [Pg.23]    [Pg.304]    [Pg.176]    [Pg.106]    [Pg.20]    [Pg.155]    [Pg.201]    [Pg.39]    [Pg.1052]    [Pg.1068]    [Pg.354]    [Pg.354]    [Pg.381]    [Pg.185]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Acrylates methyl acrylate

Cyclopentadiene with methyl acrylate

Cyclopentadiene, Diels-Alder reaction with methyl acrylate

Methyl cyclopentadiene

© 2024 chempedia.info