Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexanol phenol

Phenol s chemical properties are characterized by the influences of the hydroxyl group and the aromatic ring upon each other. Although the stmcture of phenol is similar to cyclohexanol, phenol is a much stronger acid. Its piC in aqueous solution at 25°C is 9.89 x 10 ° (8). This characteristic allows aqueous hydroxides to convert phenol into their salts. The salts, especially those of sodium and potassium, are converted back into phenol by aqueous mineral acids or carboxyhc acids. [Pg.287]

The separation section receives liquid streams from both reactors. For assessment the residue curve map in Figure 5.7 is of help. The first separation step is the removal of lights. This operation can take place in a distillation column operated under vacuum (200mmHg) with a partial condenser. Next, the separation of the ternary mixture cyclohexanone/cyclohexanol/phenol follows. Two columns are necessary. In a direct sequence (Figure 5.15) both cyclohexanone and cyclohexanol are separated as top products. The azeotrope phenol/cyclohexanol to be recycled is the bottoms from the second split In an indirect sequence (Figure 5.16) the azeotropic phenol mixture is a bottom product already from the first split. Then, in the second split cyclohexanone is obtained as the top distillate, while cyclohexanol is taken off as the bottom product The final column separates the phenol from the heavies. [Pg.152]

ROH 1-Hexanol, 3-Hexanol, Cyclohexanol, Phenol, 4-Chlorophenol, 2-Naphthol Benzhydrol, fe/t-Butanol, Geraniol, Ally a 100 hoi, 3-Methyl-2-butene-1 -ol 1,2-Ethanediol, 1,4-Butanedlol 4-Chlorobenzyl alcohol... [Pg.378]

Hydrogen donors for hydroesterification may be primary or secondary alcohols, cyclohexanol, phenol or polyols. Linear or branched primary alcohols react similarly secondary alcohols are less active and tertiary alcohols are not suitable. The reactivity of various olefins has been compared. ... [Pg.522]

STRATEGY AND ANSWER Alcohols are less acidic than phenols, and phenols are less acidic than carboxylic acids. An electron-withdrawing group increases the acidity of a phenol relative to phenol itself. Thus the order of increasing acidity among these examples is cyclohexanol < phenol < 4-nitrophenol < benzoic acid. [Pg.950]

The antioxidants B-1, B-2, and B-3 are esters of pyrocatechol-boric acid and cyclohexanol, phenol, and a-naphthol. They are all good... [Pg.36]

Phenol Vi Cyclohexene. In 1989 Mitsui Petrochemicals developed a process in which phenol was produced from cyclohexene. In this process, benzene is partially hydrogenated to cyclohexene in the presence of water and a mthenium-containing catalyst. The cyclohexene then reacts with water to form cyclohexanol or oxygen to form cyclohexanone. The cyclohexanol or cyclohexanone is then dehydrogenated to phenol. No phenol plants have been built employing this process. [Pg.289]

When camphene reacts with guaiacol (2-methoxyphenol), a mixture of terpenyl phenols is formed. Hydrogenation of the mixture results ia hydrogenolysis of the methoxy group and gives a complex mixture of terpenyl cyclohexanols (eg, 3-(2-isocamphyl) cyclohexanol [70955-71 (45)), which... [Pg.416]

Riboflavin forms fine yellow to orange-yeUow needles with a bitter taste from 2 N acetic acid, alcohol, water, or pyridine. It melts with decomposition at 278—279°C (darkens at ca 240°C). The solubihty of riboflavin in water is 10—13 mg/100 mL at 25—27.5°C, and in absolute ethanol 4.5 mg/100 mL at 27.5°C it is slightly soluble in amyl alcohol, cyclohexanol, benzyl alcohol, amyl acetate, and phenol, but insoluble in ether, chloroform, acetone, and benzene. It is very soluble in dilute alkah, but these solutions are unstable. Various polymorphic crystalline forms of riboflavin exhibit variations in physical properties. In aqueous nicotinamide solution at pH 5, solubihty increases from 0.1 to 2.5% as the nicotinamide concentration increases from 5 to 50% (9). [Pg.75]

Dutch State Mines (Stamicarbon). Vapor-phase, catalytic hydrogenation of phenol to cyclohexanone over palladium on alumina, Hcensed by Stamicarbon, the engineering subsidiary of DSM, gives a 95% yield at high conversion plus an additional 3% by dehydrogenation of coproduct cyclohexanol over a copper catalyst. Cyclohexane oxidation, an alternative route to cyclohexanone, is used in the United States and in Asia by DSM. A cyclohexane vapor-cloud explosion occurred in 1975 at a co-owned DSM plant in Flixborough, UK (12) the plant was rebuilt but later closed. In addition to the conventional Raschig process for hydroxylamine, DSM has developed a hydroxylamine phosphate—oxime (HPO) process for cyclohexanone oxime no by-product ammonium sulfate is produced. Catalytic ammonia oxidation is followed by absorption of NO in a buffered aqueous phosphoric acid... [Pg.430]

Cyclohexanol [108-93-0] is a colorless, viscous liquid with a camphoraceous odor. It is used chiefly as a chemical iatermediate, a stabilizer, and a homogenizer for various soap detergent emulsions, and as a solvent for lacquers and varnishes. Cyclohexanol was first prepared by the treatment of 4-iodocyclohexanol with ziac dust ia glacial acetic acid, and later by the catalytic hydrogenation of phenol at elevated temperatures and pressures. [Pg.425]

Cyclohexanol. This alcohol is produced commercially by the catalytic air oxidation of cyclohexane or the catalytic hydrogenation of phenol. [Pg.425]

The oxidation of cyclohexane to a mixture of cyclohexanol and cyclohexanone, known as KA-od (ketone—alcohol, cyclohexanone—cyclohexanol cmde mixture), is used for most production (1). The earlier technology that used an oxidation catalyst such as cobalt naphthenate at 180—250°C at low conversions (2) has been improved. Cyclohexanol can be obtained through a boric acid-catalyzed cyclohexane oxidation at 140—180°C with up to 10% conversion (3). Unreacted cyclohexane is recycled and the product mixture is separated by vacuum distillation. The hydrogenation of phenol to a mixture of cyclohexanol and cyclohexanone is usually carried out at elevated temperatures and pressure ia either the Hquid (4) or ia the vapor phase (5) catalyzed by nickel. [Pg.425]

Cyclohexanone purity is most readily deteanined by gas-Hquid chromatography over DC-710 or carbowax 20M-on-chromosorb. Impurities such as cyclohexane, ben2ene, cyclohexanol, and phenol do not interfere. In the absence of other carbonyl compounds cyclohexanone may be deterrnined by treatment with hydroxylamine hydrochloride, which forms the oxime, as follows ... [Pg.427]

Photolysis of pyridazine IV-oxide and alkylated pyridazine IV-oxides results in deoxygenation. When this is carried out in the presence of aromatic or methylated aromatic solvents or cyclohexane, the corresponding phenols, hydroxymethyl derivatives or cyclohexanol are formed in addition to pyridazines. In the presence of cyclohexene, cyclohexene oxide and cyclohexanone are generated. [Pg.12]

Me3SiCH2CH=CH2i TsOH, CH3CN, 70-80°, 1-2 h, 90-95% yield. This silylating reagent is stable to moisture. Allylsilanes can be used to protect alcohols, phenols, and carboxylic acids there is no reaction with thiophenol except when CF3S03H is used as a catalyst. The method is also applicable to the formation of r-butyldimethylsilyl derivatives the silyl ether of cyclohexanol was prepared in 95% yield from allyl-/-butyldi-methylsilane. Iodine, bromine, trimethylsilyl bromide, and trimethylsilyl iodide have also been used as catalysts. Nafion-H has been shown to be an effective catalyst. [Pg.70]

A route to phenol has been developed starting from cyclohexane, which is first oxidised to a mixture of cyclohexanol and cyclohexanone. In one process the oxidation is carried out in the liquid phase using cobalt naphthenate as catalyst. The cyclohexanone present may be converted to cyclohexanol, in this case the desired intermediate, by catalytic hydrogenation. The cyclohexanol is converted to phenol by a catalytic process using selenium or with palladium on charcoal. The hydrogen produced in this process may be used in the conversion of cyclohexanone to cyclohexanol. It also may be used in the conversion of benzene to cyclohexane in processes where benzene is used as the precursor of the cyclohexane. [Pg.637]

Obtain energies for each ion and for their correspondin precursors benzoic acid,phenol and cyclohexanol). Us this information to calculate the energy for each of the abov deprotonation reactions. (The energy of proton is given left.) Is the trend consistent with the experimental pKa dat (see table at left) Does deprotonation energy parade charge delocalization in these systems Explain ho electron delocalization affects the reactivity of these acidf... [Pg.52]

Figure 12.14 Chromatographic analysis of aniline (a) Precolumn chromatogram (the compound represented by the shaded peak is solvent flushed) (b) main column chromatogram without cryotrapping (c) main column chromatogram with ciyottapping. Conditions DCS, two columns and two ovens, with and without ciyottapping facilities columns OV-17 (25 m X 0.32 mm i.d., 1.0 p.m d.f.) and HP-1 (50 m X 0.32 mm, 1.05 p.m df). Peak identification is as follows 1, benzene 2, cyclohexane 3, cyclohexylamine 4, cyclohexanol 5, phenol 6, aniline 7, toluidine 8, nittobenzene 9, dicyclohexylamine. Reprinted with permission from Ref. (20). Figure 12.14 Chromatographic analysis of aniline (a) Precolumn chromatogram (the compound represented by the shaded peak is solvent flushed) (b) main column chromatogram without cryotrapping (c) main column chromatogram with ciyottapping. Conditions DCS, two columns and two ovens, with and without ciyottapping facilities columns OV-17 (25 m X 0.32 mm i.d., 1.0 p.m d.f.) and HP-1 (50 m X 0.32 mm, 1.05 p.m df). Peak identification is as follows 1, benzene 2, cyclohexane 3, cyclohexylamine 4, cyclohexanol 5, phenol 6, aniline 7, toluidine 8, nittobenzene 9, dicyclohexylamine. Reprinted with permission from Ref. (20).
Infrared spectrum, benzaldehyde, 730 butanoic acid, 771 cyclohexane., 436 cyclohexanol, 633 cyclohexanone, 730 cyclohexene. 436 cyclohexylamine, 952 diethyl ether, 671 ethanol, 421 hexane. 424 1-hexene, 424 1-hexyne, 424 phenol, 633... [Pg.1302]

A procedure similar to that used in the investigation of the hydro-demethylation of xylenes was also employed in a study of the consecutive hydrogenation of phenol via cyclohexanone to cyclohexanol in gaseous phase on a platinum on silica gel catalyst (p. 27) at 150°C [scheme (VI)] at this temperature both reactions were irreversible under the excess hydrogen used. [Pg.31]

Fig. 7. Dependence of relative molar concentrations n-Jn of reaction components on reciprocal space velocity W/F (hr kg mole-1) in the consecutive hydrogenation of phenol. Temperature 150°C, catalyst Pt-SiCh (1% wt. Pt), initial molar ratio of reactants G = 9. The curves were calculated (1—phenol, 2—cyclohexanone, 3—cyclohexanol) the points are experimental values. From Ref. (61). Reproduced by permission of the copyright owner. Fig. 7. Dependence of relative molar concentrations n-Jn of reaction components on reciprocal space velocity W/F (hr kg mole-1) in the consecutive hydrogenation of phenol. Temperature 150°C, catalyst Pt-SiCh (1% wt. Pt), initial molar ratio of reactants G = 9. The curves were calculated (1—phenol, 2—cyclohexanone, 3—cyclohexanol) the points are experimental values. From Ref. (61). Reproduced by permission of the copyright owner.
A Comparison of the Degrees of Conversion to Cyclohexanol (xi) in the Hydrogenation of Phenol and of Cyclohexanone, respectively ... [Pg.34]

Phenols can be reduced by distillation over zinc dust or with HI and red phosphorus, but these methods are quite poor and are seldom feasible. Catalytic hydrogenation has also been used, but the corresponding cyclohexanol (see 15-14) is a side product. ... [Pg.867]

The pa s of cyclohexanol is 18, whereas the of phenol is 10. This means that phenol is eight orders of magnitude more acidic than cyclohexanol. In other words, phenol is 100 million times more acidic than cyclohexanol. Why is there such a huge difference We can understand why cyclohexanol has a of 18, because that is within the expected range of an alcohol (15-18). So the real question is why is the x>K of phenol so low Why is phenol so much more acidic than a regular alcohol To answer this question, we will use the R of ARIO Resonance) to explain the acidity of phenol ... [Pg.307]

The photoinitiator selected for this study was 1-benzoyl cyclohexanol (Irgacure 184 from Ciba Geigy), a compound known for its high initiation efficiency and the weak coloration of its photoproducts. The multifunctional monomer was an epoxy-diacrylate derivative of bis-phenol A (Ebecryl 605 from UCB). A reactive diluent, tripropyleneglycol diacrylate, had to be introduced in equal amounts, in order to lower the viscosity of the formulation to about 0.3 Pa.s. [Pg.213]


See other pages where Cyclohexanol phenol is mentioned: [Pg.247]    [Pg.249]    [Pg.528]    [Pg.444]    [Pg.151]    [Pg.1375]    [Pg.194]    [Pg.44]    [Pg.189]    [Pg.947]    [Pg.373]    [Pg.247]    [Pg.249]    [Pg.528]    [Pg.444]    [Pg.151]    [Pg.1375]    [Pg.194]    [Pg.44]    [Pg.189]    [Pg.947]    [Pg.373]    [Pg.292]    [Pg.427]    [Pg.2094]    [Pg.483]    [Pg.40]    [Pg.7]    [Pg.23]    [Pg.33]    [Pg.1019]    [Pg.176]    [Pg.287]   
See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Cyclohexanol

Cyclohexanol from phenol

Cyclohexanol separation from phenol

© 2024 chempedia.info