Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloadditions metal-catalyzed

In this book we have tried to cover some interesting aspects of the development of metal-catalyzed reactions. Different aspects of the various types of cycloaddition reactions have been covered. [Pg.2]

Gothelf presents in Chapter 6 a comprehensive review of metal-catalyzed 1,3-di-polar cycloaddition reactions, with the focus on the properties of different chiral Lewis-acid complexes. The general properties of a chiral aqua complex are presented in the next chapter by Kanamasa, who focuses on 1,3-dipolar cycloaddition reactions of nitrones, nitronates, and diazo compounds. The use of this complex as a highly efficient catalyst for carbo-Diels-Alder reactions and conjugate additions is also described. [Pg.3]

It is our hope that this book, besides being of interest to chemists in academia and industry who require an introduction to the field, an update, or a part of a coherent review to the field of metal-catalyzed cycloaddition reactions, will also be found stimulating by undergraduate and graduate students. [Pg.3]

The cycloaddition reactions of carbonyl compounds with conjugated dienes cannot be discussed in this context without trying to understand the reaction mechanistically. This chapter will give the basic background to the reactions whereas Chapter 8 dealing with theoretical aspects of metal-catalyzed cycloaddition reactions will give a more detailed description of this class of reactions, and others discussed in this book. [Pg.152]

Asymmetric Metal-catalyzed 1,3-Dipolar Cycloaddition Reactions... [Pg.210]

The 1,3-dipoles consist of elements from main groups IV, V, and VI. The parent 1,3-dipoles consist of elements from the second row and the central atom of the dipole is limited to N or O [10]. Thus, a limited number of structures can be formed by permutations of N, C, and O. If higher row elements are excluded twelve allyl anion type and six propargyl/allenyl anion type 1,3-dipoles can be obtained. However, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions have only been explored for the five types of dipole shown in Scheme 6.2. [Pg.212]

Basic Aspects of Metal-catalyzed 1,3-Dipolar Cycloaddition Reactions 215 The normal electron-demand 1,3-dlpolar cycloaddition reaction... [Pg.215]

Finally, there is the enantioselectivity of the 1,3-dipolar cycloaddition reactions. This chapter is limited to describing only the metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions that involve non-chiral starting materials. The only fac-... [Pg.217]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

Several titanium(IV) complexes are efficient and reliable Lewis acid catalysts and they have been applied to numerous reactions, especially in combination with the so-called TADDOL (a, a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) (22) ligands [53-55]. In the first study on normal electron-demand 1,3-dipolar cycloaddition reactions between nitrones and alkenes, which appeared in 1994, the catalytic reaction of a series of chiral TiCl2-TADDOLates on the reaction of nitrones 1 with al-kenoyloxazolidinones 19 was developed (Scheme 6.18) [56]. These substrates have turned out be the model system of choice for most studies on metal-catalyzed normal electron-demand 1,3-dipolar cycloaddition reactions of nitrones as it will appear from this chapter. When 10 mol% of the catalyst 23a was applied in the reaction depicted in Scheme 6.18 the reaction proceeded to give a yield of up to 94% ee after 20 h. The reaction led primarily to exo-21 and in the best case an endo/ exo ratio of 10 90 was obtained. The chiral information of the catalyst was transferred with a fair efficiency to the substrates as up to 60% ee of one of the isomers of exo3 was obtained [56]. [Pg.226]

The first, and so far only, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction of nitrile oxides with alkenes was reported by Ukaji et al. [76, 77]. Upon treatment of allyl alcohol 45 with diethylzinc and (l ,J )-diisopropyltartrate, followed by the addition of diethylzinc and substituted hydroximoyl chlorides 46, the isoxazolidines 47 are formed with impressive enantioselectivities of up to 96% ee (Scheme 6.33) [76]. [Pg.235]

The above described approach was extended to include the 1,3-dipolar cycloaddition reaction of nitrones with allyl alcohol (Scheme 6.35) [78]. The zinc catalyst which is used in a stoichiometric amount is generated from allyl alcohol 45, Et2Zn, (R,J )-diisopropyltartrate (DIPT) and EtZnCl. Addition of the nitrone 52a leads to primarily tmns-53a which is obtained in a moderate yield, however, with high ee of up to 95%. Application of 52b as the nitrone in the reaction leads to higher yields of 53b (47-68%), high trans selectivities and up to 93% ee. Compared to other metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions of... [Pg.236]

Whereas there are numerous examples of the application of the products from diastereoselective 1,3-dipolar cycloaddition reaction in synthesis [7, 8], there are only very few examples on the application of the products from metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction in the synthesis of potential target molecules. The reason for this may be due to the fact that most metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction have been carried out on model systems that have not been optimized for further derivatization. One exception of this is the synthesis of a / -lactam by Kobayashi and Kawamura [84]. The isoxazoli-dine endo-21h, which was obtained in 96% ee from the Yb(OTf)3-BINOL-catalyzed... [Pg.239]

The first report on metal-catalyzed asymmetric azomethine ylide cycloaddition reactions appeared some years before this topic was described for other 1,3-dipolar cycloaddition reactions [86]. However, since then the activity in this area has been very limited in spite of the fact that azomethine ylides are often stabilized by metal salts as shown in Scheme 6.40. [Pg.240]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Zinc-tartrate complexes were applied for reactions of both nitrones and nitrile oxides with allyl alcohol and for both reaction types selectivities of more than 90% ee were obtained. Whereas the reactions of nitrones required a stoichiometric amount of the catalyst the nitrile oxide reactions could be performed in the presence of 20 mol% of the catalyst. This is the only example on a metal-catalyzed asymmetric 1,3-dipolar cycloaddition of nitrile oxides. It should however be no-... [Pg.244]

Although the first metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction involved azomethine ylides, there has not been any significant activity in this area since then. The reactions that were described implied one of more equivalents of the chiral catalyst, and further development into a catalytic version has not been reported. [Pg.245]

The development of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions is probably going to continue during the next decade. High level of control of the reactions of nitrones has been obtained, and for these reactions one of the next challenges is to explore new substrates that are designed for application in synthesis. The development of metal-catalyzed asymmetric reactions of the other... [Pg.245]

In the nitrone cycloaddition reactions catalyzed by the l ,J -DBFOX/Ph transition metal complexes also, the diastereo- and enantioselectivities were found to depend upon the presence of MS 4 A [71]. Thus, both the selectivities were much lowered in the iron(II) or nickel(II) complex-catalyzed reactions without MS 4 A,... [Pg.270]

Metal-catalyzed cycloaddition reactions have been in intensive development in recent years and many aspects of the various types of reaction are covered in the many different books, reviews, and numerous research papers dealing with the topic. The focus of the work performed in the field of metal-catalyzed cycloaddition reactions has been devoted to the development of the reactions i.e. screening reaction conditions (e.g. different metals and ligands), substrates, and showing that the reaction developed might have a potential for the synthesis of products of general interests. [Pg.301]

Compared with very intensive work in the development of metal-catalyzed cycloaddition reactions, the work in the field of understanding these reaction from a theoretical point of view is very limited. Although there are many reasons for this, the main reason is probably that only recently has it become possible to perform trustworthy calculations for metal systems to obtain reliable information about reaction courses for metal-catalyzed cycloaddition reactions. [Pg.301]

This chapter will try to cover some developments in the theoretical understanding of metal-catalyzed cycloaddition reactions. The reactions to be discussed below are related to the other chapters in this book in an attempt to obtain a coherent picture of the metal-catalyzed reactions discussed. The intention with this chapter is not to go into details of the theoretical methods used for the calculations - the reader must go to the original literature to obtain this information. The examples chosen are related to the different chapters, i.e. this chapter will cover carbo-Diels-Alder, hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions. Each section will start with a description of the reactions considered, based on the frontier molecular orbital approach, in an attempt for the reader to understand the basis molecular orbital concepts for the reaction. [Pg.301]


See other pages where Cycloadditions metal-catalyzed is mentioned: [Pg.212]    [Pg.228]    [Pg.241]    [Pg.242]   
See also in sourсe #XX -- [ Pg.4 , Pg.4 , Pg.106 ]




SEARCH



© 2024 chempedia.info