Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclizations Diels-Alder cyclization

Palladium catalyzed cycloisomerizations of 6-cn-l-ynes lead most readily to five-membered rings. Palladium binds exclusively to terminal C = C triple bonds in the presence of internal ones and induces cyclizations with high chemoselectivity. Synthetically useful bis-exocyclic 1,3-dienes have been obtained in high yields, which can, for example, be applied in Diels-Alder reactions (B.M. Trost, 1989). [Pg.84]

Two approaches to convergent steroid syntheses are based on the thermal opening of benzocyclobutenes to the o-quinodimethane derivatives (see p. 80 W. Oppolzer, 1978 A) and their stereoselective intramolecular Diels-Alder cyclizations. T, Kametani (1977 B, 1978) obtained (+ )-estradiol in a six-step synthesis. The final Diels-Alder reaction occurred regio- and stereoselectively in almost quantitative yield, presumably because the exo transition state given below is highly favored over the endo state in which rings A and D would stcrically inter-... [Pg.280]

Barrelene was obtained via a double Diels-Alder reaction from a-pyrone with methyl acrylate (H.E. Zimmerman, I969A). The primarily forming bicyclic lactone decarboxylates in the heat, and the resulting cyclohexadiene rapidly undergoes another Diels-Alder cyclization. Standard reactions have then been used to eliminate the methoxycarbonyl groups and to introduce C—C double bonds. Irradiation of barrelene produces semibullvalene and cyclooctatetraene (H.E. Zimmerman. 1969B). [Pg.331]

Indoles are usually constructed from aromatic nitrogen compounds by formation of the pyrrole ring as has been the case for all of the synthetic methods discussed in the preceding chapters. Recently, methods for construction of the carbocyclic ring from pyrrole derivatives have received more attention. Scheme 8.1 illustrates some of the potential disconnections. In paths a and b, the syntheses involve construction of a mono-substituted pyrrole with a substituent at C2 or C3 which is capable of cyclization, usually by electrophilic substitution. Paths c and d involve Diels-Alder reactions of 2- or 3-vinyl-pyrroles. While such reactions lead to tetrahydro or dihydroindoles (the latter from acetylenic dienophiles) the adducts can be readily aromatized. Path e represents a category Iley cyclization based on 2 -I- 4 cycloadditions of pyrrole-2,3-quinodimcthane intermediates. [Pg.79]

CATEGORY lldf AND CATEGORY Wfh CYCLIZATIONS - DIELS-ALDER REACTIONS OF VINYLPYRROLES... [Pg.84]

As illustrated in Scheme 8.1, both 2-vinylpyrroles and 3-vinylpyiroles are potential precursors of 4,5,6,7-tetrahydroindolcs via Diels-Alder cyclizations. Vinylpyrroles are relatively reactive dienes. However, they are also rather sensitive compounds and this has tended to restrict their synthetic application. While l-methyl-2-vinylpyrrole gives a good yield of an indole with dimethyl acetylenedicarboxylate, ot-substitiients on the vinyl group result in direct electrophilic attack at C5 of the pyrrole ring. This has been attributed to the stenc restriction on access to the necessary cisoid conformation of the 2-vinyl substituent[l]. [Pg.84]

Vinyl ethers and a,P unsaturated carbonyl compounds cyclize in a hetero-Diels-Alder reaction when heated together in an autoclave with small amounts of hydroquinone added to inhibit polymerisation. Acrolein gives 3,4-dihydro-2-methoxy-2JT-pyran (234,235), which can easily be hydrolysed to glutaraldehyde (236) or hydrogenated to 1,5-pentanediol (237). With 2-meth5lene-l,3-dicarbonyl compounds the reaction is nearly quantitative (238). [Pg.115]

An intramolecular Diels-Alder cyclization produces excellent yields of 2-aminoquinoline-3-carboxylate esters (57). Equally fine yields of the requited carbodiimides have been reported, making this an attractive route to an unusual substitution type. [Pg.392]

A similar intramolecular Diels-Alder strategy was employed in an efficient synthesis to an appropriately functionalized hydrindanone nucleus (212). After functionalization, Diels-Alder cyclization, and appropriate functional group manipulation, this hydrindanone was converted into ( )-cortisone. The overall process afforded ( )-cortisone in a total of 18 chemical steps in approximately 3% yield. [Pg.439]

Myrcene with its conjugated diene system readily undergoes Diels-Alder reactions with a number of dienophiles. For example, reaction with 3-meth.5i-3-pentene-2-one with a catalytic amount of AlCl gives an intermediate monocyclic ketone, which when cyclized with 85% phosphoric acid produces the bicycHc ketone known as Iso E Super [54464-57-2] (49). The product is useful in providing sandalwood-like and cedarwood-like fragrance ingredients (91). [Pg.417]

The following compounds have been obtained from thiete 1,1-dioxide Substituted cycloheptatrienes, benzyl o-toluenethiosulfinate, pyrazoles, - naphthothiete 1,1-dioxides, and 3-subst1tuted thietane 1,1-dioxides.It is a dienophile in Diels-Alder reactions and undergoes cycloadditions with enamines, dienamines, and ynamines. Thiete 1,1-dioxide is a source of the novel intermediate, vinylsulfene (CH2=CHCH=SQ2). which undergoes cyclo-additions to strained olefinic double bonds, reacts with phenol to give allyl sulfonate derivatives or cyclizes unimolecularly to give an unsaturated sultene. - Platinum and iron complexes of thiete 1,1-dioxide have been reported. [Pg.215]

Aqueous hydrofluoric acid dissolved in acetonitrile is a good catalyst for intramolecular Diels-Alder reactions [9] This reagent promotes highly stereoselective cyclizations of different triene esters (equation 8) The use of other acids, such as hydrochloric, acetic, and trifluoroacetic acid, results in complete polymerization of the starting trienes [9] (equation 8)... [Pg.943]

Thermal and photochemical cycloaddition reactions always take place with opposite stereochemistry. As with electrocyclic reactions, we can categorize cycloadditions according to the total number of electron pairs (double bonds) involved in the rearrangement. Thus, a thermal Diels-Alder [4 + 2] reaction between a diene and a dienophile involves an odd number (three) of electron pairs and takes place by a suprafacial pathway. A thermal [2 + 2] reaction between two alkenes involves an even number (two) of electron pairs and must take place by an antarafacial pathway. For photochemical cyclizations, these selectivities are reversed. The general rules are given in Table 30.2. [Pg.1190]

Sequential radical cyclizations are also featured in an efficient and clever synthesis of the cedrane framework 83 (see Scheme 15).30 Compound 81, the product of a regioselective Diels-Alder reaction between isoprene (79) and nitroethylene (80), participates in a nitroaldol reaction (Henry reaction) with 5-methyl-4-hexenal in the presence of a basic resin to give 82. Because the nitro group in... [Pg.396]

Scheme 4 Access to various a,/ -unsaturated carbene complexes from alkynylcarbene complexes 23. A 1,3-Dipolar cycloaddition. B Diels-Alder reaction. C Ene reaction. D [2+2] Cycloaddition. E Michael-type addition followed by cyclization. F Michael-type additions... Scheme 4 Access to various a,/ -unsaturated carbene complexes from alkynylcarbene complexes 23. A 1,3-Dipolar cycloaddition. B Diels-Alder reaction. C Ene reaction. D [2+2] Cycloaddition. E Michael-type addition followed by cyclization. F Michael-type additions...
Ethyl l-cyano-2-methylcyclohexanecarboxylate has been prepared by catalytically hydrogenating the Diels-Alder adduct from butadiene and ethyl 2-cyano-2-butenoate3 and by the procedure described in this preparation.4 8 This procedure illustrates a general method for the preparation of alicyclic compounds by the cyclization of <5-ethylenic carbon radicals l.6 Whereas the primary 5-hexen-l-yl radical 1... [Pg.61]

Other examples that involve intermediate allyl cations are illustrated in Scheme 1.4. The cationic palladium(II) complex [Pd(dppp)(PhCN)2](BF4)2 coordinates the carbonyl oxygen of benzaldehyde and the activated carbonyl carbon attacks the isoprene, forming the allyl cation 10 which then cyclizes to give the 4-methyl-6-phenyl-5,6-dihydro-2H-pyran [22]. 2-Oxopropyl acrylate 11, in the presence of trimethylsilyltrifluoromethane sulfonate (TMSOTf) and methoxytrimethylsilane (MeOSMT), generates the cation 11a which is an efficient dienophile that reacts easily with the cyclohexadiene to give the Diels-Alder adduct in good yield [23]. [Pg.6]

Wang recently reported [30] that thermolysis of carbodiimides 15 (Scheme 1.5) in aromatic solvents is an efficient route to indoloquinolines 18 used as precursors for synthesizing naturally occurring alkaloids [31], The cyclization is thought to occur through a two-step biradical Diels-Alder reaction that gives 17, which then tautomerizes to 18. [Pg.9]

Within the diastereomeric switch sequences, the corresponding trans-diols become accessible either using a Mitsunobu inversion or a reversible Diels-Alder cyclization as key reaction step [249,250]. This synthetic strategy is complementary to an approach involving metabolic engineering of E. coli via the chorismate/ isochorismate pathway [251]. [Pg.260]

Intramolecular versions of the Diels-Alder reaction are well known, and this is a powerful method for the synthesis of mono- and polycyclic compounds.There are many examples and variations. One interesting internal Diels-Alder reaction links the diene and dienophile by a C—O—SiR2—or a C—O—SiR2—O—C linkage. Internal cyclization to give a bicyclic product is followed by cleavage of the O-Si unit to give a monocyclic alcohol. [Pg.1066]

As applied to cycloaddition reactions the rule is that reactions are allowed only when all overlaps between the HOMO of one reactant and the LUMO of the other are such that a positive lobe overlaps only with another positive lobe and a negative lobe only with another negative lobe. We may recall that monoalkenes have two n molecular orbitals (p. 9) and that conjugated dienes have four (p. 36), as shown in Figure 15.1. A concerted cyclization of two monoalkenes (a 2 -f- 2 reaction) is not allowed because it would require that a positive lobe overlap with a negative lobe (Fig. 15.2). On the other hand, the Diels-Alder reaction (a 2 -f 4 reaction) is allowed, whether considered from either direction (Fig. 15.3). [Pg.1068]

A first milestone was the development of a novel intramolecular Diels-Alder cyclization of terphenyl monomers 38 and 41, containing both 4-phenylbuta-dienyl and styryl functions. The formation of the [4-1-2] cyclization adducts 39 and 42 is followed by a simple aromatization of the cyclohexene moieties [59]. In this way, the phenylated, two-dimensional arylene structures, 40 and 43,... [Pg.185]


See other pages where Cyclizations Diels-Alder cyclization is mentioned: [Pg.133]    [Pg.438]    [Pg.442]    [Pg.173]    [Pg.829]    [Pg.830]    [Pg.44]    [Pg.11]    [Pg.115]    [Pg.17]    [Pg.468]    [Pg.519]    [Pg.586]    [Pg.14]    [Pg.304]    [Pg.352]    [Pg.149]    [Pg.261]    [Pg.2091]    [Pg.127]    [Pg.141]    [Pg.143]    [Pg.80]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Anionic intramolecular Diels-Alder cyclization

Cyclization reactions Diels-Alder

Cyclization reactions Diels-Alder reaction

Cyclization, radicals Diels-Alder

Cyclization, radicals Diels-Alder reaction

Cyclizations, Diels-Alder

Cyclohexane derivatives Diels-Alder cyclizations

Cyclopentadienes Diels-Alder cyclization

Diels Alder-type cyclization reactions

Diels cyclization

Diels-Alder cyclization

Diels-Alder cyclization

Diels-Alder cyclization, cyclopentadien

Diels-Alder cyclization, intramolecular

Diels-Alder reactions radical cyclizations

Diels-Alder reactions transannular cyclization

Nitronic esters tandem Diels-Alder-cyclization reactions

Reversible Diels-Alder cyclization,

Solvent Diels-Alder cyclizations

Vinylindoles, Diels-Alder cyclizations

© 2024 chempedia.info