Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical reactions cycloaddition

As final examples, the intramolecular cyclopropane formation from cycloolefins with diazo groups (S.D. Burke, 1979), intramolecular cyclobutane formation by photochemical cycloaddition (p. 78, 297f., section 4.9), and intramolecular Diels-Alder reactions (p. 153f, 335ff.) are mentioned. The application of these three cycloaddition reactions has led to an enormous variety of exotic polycycles (E.J. Corey, 1967A). [Pg.94]

A-Substituted pyrroles, furans and dialkylthiophenes undergo photosensitized [2 + 2] cycloaddition reactions with carbonyl compounds to give oxetanes. This is illustrated by the addition of furan and benzophenone to give the oxetane (138). The photochemical reaction of pyrroles with aliphatic aldehydes and ketones results in the regiospecific formation of 3-(l-hydroxyalkyl)pyrroles (e.g. 139). The intermediate oxetane undergoes rearrangement under the reaction conditions (79JOC2949). [Pg.67]

Azirine, trans-2-methyl-3-phenyl-racemization, 7, 33, 34 1-Azirine, 2-phenyl-reactions, 7, 69 with carbon disulfide, S, 153 1-Azirine, 3-vinyl-rearrangements, 7, 67 Azirines, 7, 47-93 cycloaddition reactions, 7, 26 fused ring derivatives, 7, 47-93 imidazole synthesis from, 5, 487-488 photochemical addition reactions to carbonyl compounds, 7, 56 photolysis, 5, 780, 7, 28 protonated... [Pg.528]

Thiophene, 3-pentadeuterophenyl-chemical shifts, 4, 730 Thiophene, 2-phenyl-oxidation, 4, 800 phototranspositions, 4, 743 rearrangement, 4, 42 reduction, 4, 775 synthesis, 4, 865, 914 UV spectrum, 4, 735 Thiophene, 3-phenyl-photochemical rearrangements, 4, 735 phototranspositions, 4, 743 lsmeier formylation, 4, 759 Thiophene, 2-pivaloyl-Birch reduction, 4, 775 Thiophene, polybromo-reactivity, 4, 829 Thiophene, polylithio-synthesis, 4, 831 Thiophene, (propargylthio)-rearrangement, 4, 746 Thiophene, 2-(3-pyridinyl)-synthesis, 4, 781 Thiophene, 2-(5-pyrimidinyl)-synthesis, 4, 781 Thiophene, 3-pyrrolidinyl-cycloaddition reactions, 4, 68 with dimethyl acetylenedicarboxylate, 4, 788-789... [Pg.892]

Direct photochemical excitation of unconjugated alkenes requires light with A < 230 nm. There have been relatively few studies of direct photolysis of alkenes in solution because of the experimental difficulties imposed by this wavelength restriction. A study of Z- and -2-butene diluted with neopentane demonstrated that Z E isomerization was competitive with the photochemically allowed [2tc + 2n] cycloaddition that occurs in pure liquid alkene. The cycloaddition reaction is completely stereospecific for each isomer, which requires that the excited intermediates involved in cycloaddition must retain a geometry which is characteristic of the reactant isomer. As the ratio of neopentane to butene is increased, the amount of cycloaddition decreases relative to that of Z E isomerization. This effect presumably is the result of the veiy short lifetime of the intermediate responsible for cycloaddition. When the alkene is diluted by inert hydrocarbon, the rate of encounter with a second alkene molecule is reduced, and the unimolecular isomerization becomes the dominant reaction. [Pg.769]

The total synthesis of caryophyllene and its Z-isomer involved a photochemical [2 + 2] cycloaddition reaction to generate the 4-membered ring and a fragmentation process Helv. Chim. Acta, 1951, 34, 2338) to establish the 9-membered ring. Caryophyllene and various oxygenated derivatives protect plants against insects. [Pg.153]

According to the Woodw ard-Hofmann rules the concerted thermal [2n + 2n] cycloaddition reaction of alkenes 1 in a suprafacial manner is symmetry-forbidden, and is observed in special cases only. In contrast the photochemical [2n + 2n cycloaddition is symmetry-allowed, and is a useful method for the synthesis of cyclobutane derivatives 2. [Pg.77]

An explanation for the finding that concerted [4 -I- 2] cycloadditions take place thermally, while concerted [2 + 2] cycloadditions occur under photochemical conditions, is given through the principle of conservation of orbital symmetry. According to the Woodw ard-Hofmann rules derived thereof, a concerted, pericyclic [4 -I- 2] cycloaddition reaction from the ground state is symmetry-allowed. [Pg.90]

By a photochemically induced elimination of CO, a chromium carbene complex with a free coordination site is generated. That species can coordinate to an alkyne, to give the alkyne-chromium carbonyl complex 4. The next step is likely to be a cycloaddition reaction leading to a four-membered ring compound 5. A subsequent electrocyclic ring opening and the insertion of CO leads to the vinylketene complex 6 ... [Pg.98]

In contrast with the thermal process, photochemical [2 + 2] cycloadditions me observed. Irradiation of an alkene with UV light excites an electron from i /, the ground-slate HOMO, to which becomes the excited-slate HOMO. Interaction between the excited-state HOMO of one alkene and the LUMO of the second alkene allows a photochemical [2 + 2j cycloaddition reaction to occur by a suprafacial pathway (Figure 30.10b). [Pg.1189]

Figure 30.10 (a) Interaction of a ground-state HOMO and a ground-state LUMO in a potential [2 - 2] cycloaddition does not occur thermally because the antarafacial geometry is too strained, (b) Interaction of an excited-state HOMO and a ground-state LUMO in a photochemical [2 r 2] cycloaddition reaction is less strained, however, and occurs with suprafacial geometry. [Pg.1189]

The photochemical 2 t 2] cycloaddition reaction occurs smoothly and represents one of the best methods known for synthesizing cyclobutane rings. For example ... [Pg.1190]

Thermal and photochemical cycloaddition reactions always take place with opposite stereochemistry. As with electrocyclic reactions, we can categorize cycloadditions according to the total number of electron pairs (double bonds) involved in the rearrangement. Thus, a thermal Diels-Alder [4 + 2] reaction between a diene and a dienophile involves an odd number (three) of electron pairs and takes place by a suprafacial pathway. A thermal [2 + 2] reaction between two alkenes involves an even number (two) of electron pairs and must take place by an antarafacial pathway. For photochemical cyclizations, these selectivities are reversed. The general rules are given in Table 30.2. [Pg.1190]

We have also used poly(propynoic acid) in our studies of the photochemical interaction of PCSs with dienophiles, such as maleic anhydride, tetracyanoethylene, and styrene. This photochemical reaction of Diels-Alder type is accompanied by the breakdown of the conjugation system and the formation of slightly colored adducts266. Together with the cycloaddition reaction, photodegradation of PPA and its adducts takes place. A cycloaddition reaction is always preceded by the formation of a donor-acceptor complex of a PCS with a dienophile. [Pg.31]

The regioselectivity observed in these reactions can be correlated with the resonance structure shown in Fig. 2. The reaction with electron-rich or electron-poor alkynes leads to intermediates which are the expected on the basis of polarity matching. In Fig. 2 is represented the reaction with an ynone leading to a metalacycle intermediate (formal [4C+2S] cycloadduct) which produces the final products after a reductive elimination and subsequent isomerisation. Also, these reactions can proceed under photochemical conditions. Thus, Campos, Rodriguez et al. reported the cycloaddition reactions of iminocarbene complexes and alkynes [57,58], alkenes [57] and heteroatom-containing double bonds to give 2Ff-pyrrole, 1-pyrroline and triazoline derivatives, respectively [59]. [Pg.74]

Several examples of [5C+1S] cycloaddition reactions have been described involving in all cases a 1,3,5-metalahexatriene carbene complex as the C5-syn-thon and a CO or an isocyanide as the Cl-synthon. Thus,Merlic et al. described the photochemically driven benzannulation of dienylcarbene complexes to produce ortho alkoxyphenol derivatives when the reaction is performed under an atmosphere of CO, or ortho alkoxyanilines when the reaction is thermally performed in the presence of an isonitrile [111] (Scheme 63). In related works, Barluenga et al. carried out analogous reactions under thermal conditions [36a, c, 47a]. Interestingly, the dienylcarbene complexes are obtained in a first step by a [2+2] or a [3S+2C] process (see Sects. 2.3 and 2.5.1). Further reaction of these complexes with CO or an isonitrile leads to highly functionalised aromatic compounds (Scheme 63). [Pg.101]

Application of the same procedures to other ring closures shows that 4 + 4 and 2 + 6 ring closures and openings require photochemical induction while the 4 + 6 and 2 + 8 reactions can take place only thermally (see 15-52). In general, cycloaddition reactions allowed thermally are those with 4n + 2 electrons, while those allowed photochemically have 4n electrons. [Pg.1071]

It must be emphasized once again that the rules apply only to cycloaddition reactions that take place by cyclic mechanisms, that is, where two s bonds are formed (or broken) at about the same time. The rule does not apply to cases where one bond is clearly formed (or broken) before the other. It must further be emphasized that the fact that the thermal Diels-Alder reaction (mechanism a) is allowed by the principle of conservation of orbital symmetry does not constitute proof that any given Diels-Alder reaction proceeds by this mechanism. The principle merely says the mechanism is allowed, not that it must go by this pathway. However, the principle does say that thermal 2 + 2 cycloadditions in which the molecules assume a face-to-face geometry cannot take place by a cyclic mechanism because their activation energies would be too high (however, see below). As we shall see (15-49), such reactions largely occur by two-step mechanisms. Similarly. 2 + 4 photochemical cycloadditions are also known, but the fact that they are not stereospecific indicates that they also take place by the two-step diradical mechanism (mechanism... [Pg.1072]

Other relevant reactions have been described for Bfx and Fx as reactants, among them cycloaddition processes, photochemical transformations, and complexation with metals. [Pg.274]


See other pages where Photochemical reactions cycloaddition is mentioned: [Pg.456]    [Pg.456]    [Pg.53]    [Pg.53]    [Pg.550]    [Pg.596]    [Pg.652]    [Pg.652]    [Pg.813]    [Pg.872]    [Pg.895]    [Pg.1198]    [Pg.62]    [Pg.69]    [Pg.1065]    [Pg.1068]    [Pg.1081]    [Pg.1092]    [Pg.1147]    [Pg.4]    [Pg.78]    [Pg.388]    [Pg.544]    [Pg.417]    [Pg.540]   
See also in sourсe #XX -- [ Pg.877 , Pg.885 ]

See also in sourсe #XX -- [ Pg.279 , Pg.293 , Pg.295 , Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 , Pg.312 , Pg.313 , Pg.314 , Pg.315 , Pg.316 , Pg.317 ]

See also in sourсe #XX -- [ Pg.453 , Pg.460 , Pg.479 ]

See also in sourсe #XX -- [ Pg.370 , Pg.371 , Pg.372 , Pg.373 , Pg.374 , Pg.375 ]

See also in sourсe #XX -- [ Pg.429 , Pg.430 , Pg.431 , Pg.434 , Pg.454 , Pg.464 ]

See also in sourсe #XX -- [ Pg.429 , Pg.432 , Pg.434 , Pg.454 , Pg.464 ]

See also in sourсe #XX -- [ Pg.429 , Pg.430 , Pg.431 , Pg.434 , Pg.454 , Pg.464 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.279 , Pg.293 , Pg.295 , Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 , Pg.312 , Pg.313 , Pg.314 , Pg.315 , Pg.316 , Pg.317 ]

See also in sourсe #XX -- [ Pg.2 , Pg.44 ]

See also in sourсe #XX -- [ Pg.453 , Pg.460 , Pg.479 ]

See also in sourсe #XX -- [ Pg.222 , Pg.223 , Pg.224 , Pg.225 ]

See also in sourсe #XX -- [ Pg.473 , Pg.474 , Pg.475 , Pg.483 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.734 , Pg.739 , Pg.754 , Pg.755 , Pg.756 ]

See also in sourсe #XX -- [ Pg.370 , Pg.371 , Pg.372 , Pg.373 , Pg.374 , Pg.375 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.747 , Pg.751 , Pg.757 , Pg.769 , Pg.773 , Pg.778 ]

See also in sourсe #XX -- [ Pg.588 , Pg.593 ]

See also in sourсe #XX -- [ Pg.332 , Pg.333 , Pg.334 , Pg.335 , Pg.588 , Pg.599 ]

See also in sourсe #XX -- [ Pg.310 , Pg.311 , Pg.312 , Pg.313 , Pg.314 ]




SEARCH



2- Butene, 2,3-dimethylene reactions photochemical cycloadditions

Alkenes photochemical cycloaddition reactions

Cycloaddition reactions photochemical alkene dimerization

Cycloadditions photochemical reaction

Cycloadditions photochemical reaction

Ketones photochemical cycloaddition reactions

Ketones, unsaturated photochemical cycloaddition reactions

Overview of Thermal and Photochemical -Cycloaddition Reactions

Photochemical -Cycloaddition and Dimerization Reactions

Photochemical -cycloadditions

Photochemical Electrocyclic and Cycloaddition Reactions

Photochemical cycloaddition reactions enones

Photochemical cycloaddition reactions of carbonyl compounds with alkenes

Photochemical cycloadditions electrocyclic reactions

Photochemical reactions cycloaddition: aromatics

Some examples of photochemical cycloaddition and electrocyclic reactions

Stereospecificity photochemical 2+2 cycloaddition reaction

© 2024 chempedia.info