Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclization electrocyclic reactions

The direct connection of rings A and D at C l cannot be achieved by enamine or sul> fide couplings. This reaction has been carried out in almost quantitative yield by electrocyclic reactions of A/D Secocorrinoid metal complexes and constitutes a magnificent application of the Woodward-Hoffmann rules. First an antarafacial hydrogen shift from C-19 to C-1 is induced by light (sigmatropic 18-electron rearrangement), and second, a conrotatory thermally allowed cyclization of the mesoionic 16 rc-electron intermediate occurs. Only the A -trans-isomer is formed (A. Eschenmoser, 1974 A. Pfaltz, 1977). [Pg.262]

Electrocyclic reactions of 1,3,5-trienes lead to 1,3-cyclohexadienes. These ring closures also exhibit a high degree of stereospecificity. The ring closure is normally the favored reaction in this case, because the cyclic compound, which has six a bonds and two IT bonds, is thermodynamically more stable than the triene, which has five a and three ir bonds. The stereospecificity is illustrated with octatrienes 3 and 4. ,Z, -2,4,6-Octatriene (3) cyclizes only to cw-5,6-dimethyl-l,3-cyclohexadiene, whereas the , Z,Z-2,4,6-octa-triene (4) leads exclusively to the trans cyclohexadiene isomer. A point of particular importance regarding the stereochemistry of this reaction is that the groups at the termini of the triene system rotate in the opposite sense during the cyclization process. This mode... [Pg.607]

The prediction on the basis of orbital symmetry analysis that cyclization of eight-n-electron systems will be connotatoiy has been confirmed by study of isomeric 2,4,6,8-decatetraenes. Electrocyclic reaction occurs near room temperature and establishes an equilibrium that favors the cyclooctatriene product. At slightly more elevated temperatures, the hexatriene system undergoes a subsequent disrotatory cyclization, establishing equilibrium with the corresponding bicyclo[4.2.0]octa-2,4-diene ... [Pg.616]

There are also examples of electrocyclic processes involving anionic species. Since the pentadienyl anion is a six-7c-electron system, thermal cyclization to a cyclopentenyl anion should be disrotatory. Examples of this electrocyclic reaction are rare. NMR studies of pentadienyl anions indicate that they are stable and do not tend to cyclize. Cyclooctadienyllithium provides an example where cyclization of a pentadienyl anion fragment does occur, with the first-order rate constant being 8.7 x 10 min . The stereochemistry of the ring closure is consistent with the expected disrotatory nature of the reaction. [Pg.619]

That electrocyclic reaction is related to the Claisen rearrangement of phenyl vinyl ether. In a final step a cyclization takes place with subsequent elimination of ammonia to yield the indole 2 ... [Pg.114]

Thermal and photochemical cycloaddition reactions always take place with opposite stereochemistry. As with electrocyclic reactions, we can categorize cycloadditions according to the total number of electron pairs (double bonds) involved in the rearrangement. Thus, a thermal Diels-Alder [4 + 2] reaction between a diene and a dienophile involves an odd number (three) of electron pairs and takes place by a suprafacial pathway. A thermal [2 + 2] reaction between two alkenes involves an even number (two) of electron pairs and must take place by an antarafacial pathway. For photochemical cyclizations, these selectivities are reversed. The general rules are given in Table 30.2. [Pg.1190]

It is interesting to note that while the electrocyclic reaction shown in Eq. (9.104) has been developed into a very useful synthetic reaction, not all stilbene-type systems cyclize. For the reaction to occur, the sum of the free valence indices (2 F ) for the first excited state at atoms between which the new bond is formed must be greater than unityu83,184) ... [Pg.512]

Electrocyclic reactions are examples of cases where n-electron bonds transform to sigma ones [32,49,55]. A prototype is the cyclization of butadiene to cyclobutene (Fig. 8, lower panel). In this four electron system, phase inversion occurs if no new nodes are formed along the reaction coordinate. Therefore, when the ring closure is disrotatory, the system is Hiickel type, and the reaction a phase-inverting one. If, however, the motion is conrotatory, a new node is formed along the reaction coordinate just as in the HC1 + H system. The reaction is now Mobius type, and phase preserving. This result, which is in line with the Woodward-Hoffmann rules and with Zimmerman s Mobius-Hiickel model [20], was obtained without consideration of nuclear symmetry. This conclusion was previously reached by Goddard [22,39]. [Pg.453]

The predicted conrotatory cyclization of octatetraenes was confirmed for the case of the methyl-substituted compounds, which above 16 °C readily formed the cyclooctatrienes shown in equations 13 and 14)14. We conclude this section with an electrocyclic reaction involving ten TT-electrons, that is, the formation of azulene (17) when the fulvene 16 is heated (equation 15)15,16. [Pg.510]

The electrocyclic reactions of n systems containing an impaired electron are difficult to interpret using the above simple theories. The symmetry of the HOMO of the radical system corresponds to that of the corresponding anion. Thus the allyl radical would be expected to cyclize in the same manner as the alkyl anion i.e., in a conrotatory manner. In fact the interconversion takes place in a disrotatory manner. Theoretical calculations based on Huckets theory also give ambiguous or incorrect predictions. And therefore more sophisticated calculations are required to obtain reliable results. [Pg.67]

A new benzannulation methodology was developed in order to overcome the limitations of electrocyclic ring closure of divinylindoles. The cyclization is achieved via an allene-mediated electrocyclic reaction of 2,3-difunctionalized indoles. This method is more efficient for the synthesis of highly substituted 2-methyl carbazole alkaloids (559). The 3-alkenyl-2-propargylindole 557, a precursor for the allene intermediate, was prepared from 2-formylindole over several steps using simple functional group transformations (536,537) (Scheme 5.20). [Pg.204]

In the same year, Hibino et al. reported a total synthesis of furostifoline (224) employing a new type of electrocyclic reaction (636). This cyclization proceeds through a 2-alkenyl-3-allenylindole intermediate, which is derived from 2-(fur-3-yl)-3-propargyUndole 1128. Compound 1128 was prepared starting from 2-chloroindole-3-carbaldehyde (891), furan-3-boronic acid (1124), and ethynylmagnesium bromide. [Pg.309]

Ab initio and density functional calculations have been carried out on the mechanism of the 1,5-electrocyclization reactions of conjugated nitrile ylides (190). The results indicate that vinyl-conjugated systems (306) (X = CH2) cyclize via the classical electrocyclization pathway—a pericyclic, monorotatary process with a relatively early transition state in which there is substantial torsion of the vinyl group as well as pyramidalization at C(5). In contrast, systems with a heteroatom at the cyclization site 306 (X=NH, O) react via a pseudo-pericyclic process that is characterized by the in-plane attack of the lone pair of the heteroatom on the nitrile ylide. Such reactions have a lower activation energy. [Pg.518]

This technique applies to many open-chain compounds, as discussed in later chapters. Pertinent here is the intramolecular cyclization of polyenes (an electrocyclic reaction). [Pg.179]

We can conceive of similar cyclizations involving only single molecules, that is, intramolecular cyclization. Such reactions are called electrocyclic rearrangements. Two examples follow to show cyclization of a diene and a triene ... [Pg.1005]

The cyclization step of Equation 28-8 is a photochemical counterpart of the electrocyclic reactions discussed in Section 21-10D. Many similar photochemical reactions of conjugated dienes and trienes are known, and they are of great interest because, like their thermal relatives, they often are stereospecific but tend to exhibit stereochemistry opposite to what is observed for formally similar thermal reactions. For example,... [Pg.1387]

In addition to the above kinetics studies, the fluorene cyclization was studied using ab initio computational methods.323 It was found that the theoretically predicted barriers to the cyclizations for the dicationic intermediates agree well with the values obtained from the kinetic experiments. For example, geometry optimization and energy calculations at the B3LYP/6-31 level estimated that the activation energy (Ea) is 14.0 kcal/mol for the 4jt-electron conrotatory electrocyclization reaction involving compound 57 and the diprotonated intermediate (46, eq 13). [Pg.137]

Besides the fluorene cyclization, the 1,2-ethylene dications are known to undergo another type of electrocyclization reaction to produce the phenan-threne ring system (see eqs 9 and 11 and Scheme 3).32a Although derived carbenium-carboxonium dications (70) will give the phenanthrene-type products (albeit in low yield eq 15), the bis-carboxonium dication 71 does not. Moreover, the fluorene cyclization occurs readily in 1,1-dihydroxylie systems (eq 10). [Pg.139]


See other pages where Cyclization electrocyclic reactions is mentioned: [Pg.112]    [Pg.112]    [Pg.55]    [Pg.68]    [Pg.83]    [Pg.240]    [Pg.8]    [Pg.79]    [Pg.443]    [Pg.216]    [Pg.348]    [Pg.49]    [Pg.410]    [Pg.42]    [Pg.165]    [Pg.165]    [Pg.166]    [Pg.198]    [Pg.184]    [Pg.367]    [Pg.165]    [Pg.165]    [Pg.166]    [Pg.198]    [Pg.644]    [Pg.68]    [Pg.40]    [Pg.47]   
See also in sourсe #XX -- [ Pg.939 , Pg.940 , Pg.941 , Pg.942 , Pg.943 , Pg.944 , Pg.945 , Pg.946 , Pg.947 ]

See also in sourсe #XX -- [ Pg.939 , Pg.940 , Pg.941 , Pg.942 , Pg.943 , Pg.944 , Pg.945 , Pg.946 , Pg.947 ]




SEARCH



Cyclization electrocyclic

Cyclization reactions

Electrocyclic reactions Nazarov cyclization

Electrocyclic reactions photochemical cyclization

© 2024 chempedia.info