Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes, cyclization

Finally, the Heck reaction can be conducted as an intramolecular process where the -hydride elimination after the cyclizing alkene insertion is hampered, resulting in a highly reactive alkyl Pd species. Kim and Ahn [66] have introduced a sequential Heck-cyclization-Suzuki coupling that provides an... [Pg.154]

Low-valent Ti in [( Cp)2Ti]2N2 is capable of reductively cyclizing alkenes, albeit in low yield e.g., in reaction with ethylene at — 30°C in toluene it forms... [Pg.110]

Electrocyclization of conjugated dienes occurs in competition with cis-trans isomerization. The cyclization occurs from the s-cis conformation of the diene. Cyclobutene formation is favored in cyclic dienes and for other dienes where the s-cis diene conformation is dominant. For several dienes, the quantum yield in nonpolar solvents at 257 nm is about 0.1. As the cyclized alkenes do not absorb at this wavelength, the reaction can give substantial preparative yields, despite the competing cis-trans isomerization. [Pg.1101]

The 7, i5-unsaturated alcohol 99 is cyclized to 2-vinyl-5-phenyltetrahydro-furan (100) by exo cyclization in aqueous alcohol[124]. On the other hand, the dihydropyran 101 is formed by endo cyclization from a 7, (5-unsaturated alcohol substituted by two methyl groups at the i5-position. The direction of elimination of /3-hydrogen to give either enol ethers or allylic ethers can be controlled by using DMSO as a solvent and utilized in the synthesis of the tetronomycin precursor 102[125], The oxidation of the optically active 3-alkene-l,2-diol 103 affords the 2,5-dihydrofuran 104 in high ee. It should be noted that /3-OH is eliminated rather than /3-H at the end of the reac-tion[126]. [Pg.35]

Unlike the intermolecular reaction, the intramolecular aminopalladation proceeds more easily[13,14,166], Methylindole (164) is obtained by the intramolecular exo amination of 2-allylaniline (163). If there is another olefinic bond in the same molecule, the aminopalladation product 165 undergoes intramolecular alkene insertion to give the tricyclic compound 166[178]. 2,2-Dimethyl-l,2-dihydroquinoline (168) is obtained by endo cyclization of 2-(3,3-dimethyiallyl)aniline (167). The oxidative amination proceeds smoothly... [Pg.43]

In the prostaglandin synthesis shown, silyl enol ether 216, after transmetaJ-lation with Pd(II), undergoes tandem intramolecular and intermolecular alkene insertions to yield 217[205], It should be noted that a different mechanism (palladation of the alkene, rather than palladium enolate formation) has been proposed for this reaction, because the corresponding alkyl enol ethers, instead of the silyl ethers, undergo a similar cyclization[20I],... [Pg.50]

An efficient carboannulation proceeds by the reaction of vinylcyclopropane (135) or vinylcyclobutane with aryl halides. The multi-step reaction is explained by insertion of alkene, ring opening, diene formation, formation of the TT-allylpalladium 136 by the readdition of H—Pd—I, and its intramolecular reaction with the nucleophile to give the cyclized product 137[I08]. [Pg.147]

The cyclization to form very congested quaternary carbon centers involving the intramolecular insertion of di-, tri-, and tetrasubstituted alkenes is particularly useful for natural products synthesis[l36-138], In the total synthesis of gelsemine, the cyclization of 166 has been carried out, in which very severe steric hindrance is e.xpected. Interestingly, one stereoisomer 167... [Pg.152]

The alkylpalladium intermediate 198 cyclizes on to an aromatic ring, rather than forming a three-membered ring by alkene insertion[161], Spirocyclic compounds are easily prepared[l62]. Various spiroindolines such as 200 were prepared. In this synthesis, the second ring formation involves attack of an alkylpalladium species 199 on an aromatic ring, including electron-rich or -poor heteroaromatic rings[l6.5]. [Pg.157]

A interesting and useful reaetion is the intramolecular polycyclization reaction of polyalkenes by tandem or domino insertions of alkenes to give polycyclic compounds[l 38]. In the tandem cyclization. an intermediate in many cases is a neopentylpalladium formed by the insertion of 1,1-disubstituted alkenes, which has no possibility of /3-elimination. The key step in the total synthesis of scopadulcic acid is the Pd-catalyzed construction of the tricyclic system 202 containing the bicyclo[3.2. Ijoctane substructure. The single tricyclic product 202 was obtained in 82% yield from 201 [20,164). The benzyl chloride 203 undergoes oxidative addition and alkene insertion. Formation of the spiro compound 204 by the intramolecular double insertion of alkenes is an exam-ple[165]. [Pg.158]

Furthei-more, the cyclization of the iododiene 225 affords the si.x-membered product 228. In this case too, complete inversion of the alkene stereochemistry is observed. The (Z)-allylic alcohol 229 is not the product. Therefore, the cyclization cannot be explained by a simple endo mode cyclization to form 229. This cyclization is explained by a sequence of (i) e.vo-mode carbopallada-tion to form the intermediate 226, (ii) cydopropanation to form 227. and (iii) cyclopropylcarbinyl to homoallyl rearrangement to afford the (F3-allylic alcohol 228[166]. (For further examples of cydopropanation and endo versus e o cyclization. see Section 1.1.2.2.)... [Pg.161]

The dienyne 394 undergoes facile polycyclization. Since the neopentylpalla-dium 395 is formed which has no hydrogen /J to the Pd after the insertion of the disubstituted terminal alkene, the cyclopropanation takes place to form the tt-allylpalladium intermediate 396, which is terminated by elimination to form the diene 397(275]. The dienyne 398 undergoes remarkable tandem 6-e. o-dig. 5-cxo-trig. and -exo-trig cyclizations to give the tetracycle 399 exclu-sively(277]. [Pg.181]

Allylic carbonates are most reactive. Their carbonylation proceeds under mild conditions, namely at 50 C under 1-20 atm of CO. Facile exchange of CO2 with CO takes place[239]. The carbonylation of 2,7-octadienyl methyl carbonate (379) in MeOH affords the 3,8-nonadienoate 380 as expected, but carbonylation in AcOH produces the cyclized acid 381 and the bicyclic ketones 382 and 383 by the insertion of the internal alkene into Tr-allylpalladium before CO insertion[240] (see Section 2.11). The alkylidenesuccinate 385 is prepared in good yields by the carbonylation of the allylic carbonate 384 obtained by DABCO-mediated addition of aldehydes to acrylate. The E Z ratios are different depending on the substrates[241]. [Pg.341]

The mechanism of the rearrangement catalyzed by Pd(fl), typically by PdCl2(RCN)2, is explained by the oxypalladation of an alkene to form 810 as an intermediate, or cyclization-induced rearrangement. As a limitation, no rearrangement takes place when the allylie ester 812 is substituted at the C-2 position of the allyl group, while a smooth rearrangement of 811 takes place[500]. [Pg.401]

Depending on the substituents of l,6-enynes, their cyclization leads to 1.2-dialkylidene derivatives (or a 1.3-diene system). For example, cyclization of the 1,6-enyne 50 affords the 1.3-diene system 51[33-35]. Furthermore, the 1.6-enyne 53, which has a terminal alkene, undergoes cyclization with a shift of vinylic hydrogen to generate the 1,3-diene system 54. The carbapenem skeleton 56 has been synthesized based on the cyclization of the functionalized 1,6-enyne 55[36], Similarly, the cyclization of the 1,7-enyne 57 gives a si -mem-bered ring 58 with the 1,3-diene system. [Pg.478]

Dimethyl acetylenedicarboxylate (DMAD) (125) is a very special alkyne and undergoes interesting cyclotrimerization and co-cyclization reactions of its own using the poorly soluble polymeric palladacyclopentadiene complex (TCPC) 75 and its diazadiene stabilized complex 123 as precursors of Pd(0) catalysts, Cyclotrimerization of DMAD is catalyzed by 123[60], In addition to the hexa-substituted benzene 126, the cyclooctatetraene derivative 127 was obtained by the co-cyclization of trimethylsilylpropargyl alcohol with an excess of DMAD (125)[6l], Co-cyclization is possible with various alkenes. The naphthalene-tetracarboxylate 129 was obtained by the reaction of methoxyallene (128) with an excess of DMAD using the catalyst 123[62],... [Pg.487]

The cyclohexadiene derivative 130 was obtained by the co-cyclization of DMAD with strained alkenes such as norbornene catalyzed by 75[63], However, the linear 2 1 adduct 131 of an alkene and DMAD was obtained selectively using bis(maleic anhydride)(norbornene)palladium (124)[64] as a cat-alyst[65], A similar reaction of allyl alcohol with DMAD is catalyzed by the catalyst 123 to give the linear adducts 132 and 133[66], Reaction of a vinyl ether with DMAD gives the cyclopentene derivatives 134 and 135 as 2 I adducts, and a cyclooctadiene derivative, although the selectivity is not high[67]. [Pg.487]

Pd(II)-catalyzed cyclization of the siloxyhexatriene 34 offers a cyclohexe-none annulation method. The Pd enolate 35, formed by transraetallation of the silyl enol ether with Pd(II), is an intermediate which undergoes intramolecular eWo-alkene insertion. Then Pd(II) is regenerated to give 36, and finally cyclohexenone is formed[38]. [Pg.517]

The mechanism of the PdCh-catalyzed Cope rearrangement has been studied by use of the partially deuterated 1.5-diene 53[46], The coordination of Pd(II) activates the alkene, and cyclization (carbopalladation) takes place to... [Pg.534]

As another example of nitrene formation, the reaction of o-nitrostilbene (96) with CO in the presence of SnCU affords 2-phenylindole (97). The reaction is explained by nitrene formation by deoxygenation of the nitro group with CO, followed by the addition of the nitrene to alkene. Similarly, the 2//-indazole derivative 99 was prepared by reductive cyclization of the A-(2-nitrobenzyli-dene)amine 98[89]. [Pg.539]

The final step can involve introduction of the amino group or of the carbonyl group. o-Nitrobenzyl aldehydes and ketones are useful intermediates which undergo cyclization and aromatization upon reduction. The carbonyl group can also be introduced by oxidation of alcohols or alkenes or by ozonolysis. There are also examples of preparing indoles from o-aminophcnyl-acetonitriles by partial reduction of the cyano group. [Pg.14]

Using a,P-unsaturated acyl halides, alkenes are acylated to give a,P,a, P -unsaturated ketones, which undergo spontaneous intramolecular Na2arov cyclizations to cyclopentenones, important precursors of natural products (173). [Pg.562]

Olefin isomerization can be catalyzed by a number of catalysts such as molybdenum hexacarbonyl [13939-06-5] Mo(CO)g. This compound has also been found to catalyze the photopolymerization of vinyl monomers, the cyclization of olefins, the epoxidation of alkenes and peroxo species, the conversion of isocyanates to carbodiimides, etc. Rhodium carbonylhydrotris(triphenylphosphine) [17185-29-4] RhH(CO)(P(CgH )2)3, is a multifunctional catalyst which accelerates the isomerization and hydroformylation of alkenes. [Pg.172]

An important early method simulated the well-known Widman-Stoermer cinnoline synthesis. 3-Aminopyridine-2- or -4-alkenes such as (348) gave pyrido-[3,2-c]- or -[3,4-c]-pyridazines on diazotization and alkaline cyclization (66JCS(C)2053>. [Pg.243]

Dimethylsulfonium phenacylide (574) underwent C-alkylation with a-chloronitroso compounds such as (575). The intermediate (576) immediately cyclized to the isoxazoline (577). With a more basic ylide such as dimethylsulfonium methoxycarbonylmethylide the initial alkylation product underwent elimination of the sulfonium group to an alkene rather than its displacement (72T3845). [Pg.164]

The isoxazoles (585) were formed regioselectively from the (dioxoalkyl)phosphonium salts (584) with hydroxylamine hydrochloride, the direction of cyclization being different from that of the nonphosphorus-containing 1,3-dioxo compound (see Chapter 4.16). Aqueous sodium hydroxide converted (585) into the isoxazole (586) and triphenylphosphine oxide. Treatment of (585) with n-butyllithium and an aldehyde gave the alkene (587). With hydrazine or phenylhydrazine analogous pyrazoles were formed (80CB2852). [Pg.165]


See other pages where Alkenes, cyclization is mentioned: [Pg.85]    [Pg.2127]    [Pg.85]    [Pg.2127]    [Pg.44]    [Pg.44]    [Pg.46]    [Pg.156]    [Pg.159]    [Pg.299]    [Pg.311]    [Pg.396]    [Pg.396]    [Pg.427]    [Pg.484]    [Pg.550]    [Pg.85]    [Pg.36]    [Pg.83]   
See also in sourсe #XX -- [ Pg.870 , Pg.871 , Pg.872 , Pg.873 , Pg.874 , Pg.875 ]

See also in sourсe #XX -- [ Pg.12 , Pg.45 ]




SEARCH



Alkene acids, cyclization

Alkene amides, cyclization

Alkene metathesis cyclization

Alkene radical cyclization

Alkene-acetylene cyclization

Alkene-mediated cyclizations

Alkenes Heck cyclization

Alkenes electrophilic cyclization

Alkenes iminium ion cyclization

Alkenes intramolecular cyclization

Alkenes oxidative cyclization

Alkenes radical cyclizations

Alkenes rearrangement-cyclization

Alkenes, 1 -bromo-1- cyclization

Alkenes, 1-bromo-l- cyclization

Alkenes, cyclization anilines

Alkenes, cyclization benzofurans

Alkenes, cyclization bicyclic

Alkenes, cyclization coumarins

Alkenes, cyclization dienes

Alkenes, cyclization indoles

Alkenes, cyclization major products

Alkenes, cyclization quinolines

Alkenes, cyclization with

Alkynes, cyclization alkenes

Carbonyl ylides alkene cyclizations

Cyclization of alkenes

Cyclization reactions alkenes

Cyclization, radical phenylthio-alkenes

Cyclization, radicals alkenes with aldehydes

Cyclization, radicals allenes with alkenes

Cyclization, radicals with alkenes

Endo cyclization alkenes

Halo-alkenes, radical cyclization

Oximes-alkenes, radical cyclization

RXN11 Tandem Cyclization-Anion Capture (-Carbonylation) Process of Alkenes, Allenes and Alkynes

Radical cyclizations via alkene addition

Reductive cyclization with activated alkenes

Squalenoids synthesis via exo alkene cyclization

Tandem oxidative cyclization, alkenes

© 2024 chempedia.info