Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes radical cyclization

Samarium(ir) iodide in the presence of HMPA effectively promotes the intramolecular coupling of unactivated alkenic ketones by a reductive ketyl-alkene radical cyclization process (eq 25). This protocol provides a means to generate rather elaborate carbocycles through a sequencing process in which the resulting organosamarium species is trapped with various electrophiles to afford the cyclized product in high yield. ... [Pg.380]

In an effort to identify a more stereoselective route to dihydroagarofuran (15), trimethylsilylated alkyne 17 was utilized as a substrate for radical cyclization (Scheme 2). Treatment of 17 with a catalytic amount of AIBN and tri-n-butyltin hydride (1.25 equiv) furnishes a mixture of stereoisomeric vinyl silanes 18 (72% combined yield) along with an uncyclized reduction product (13% yield). The production of stereoisomeric vinyl silanes in this cyclization is inconsequential because both are converted to the same alkene 19 upon protodesiiyiation. Finally, a diastereoselective di-imide reduction of the double bond in 19 furnishes dihydroagaro-... [Pg.384]

Carbon-centered radicals generated by Barton s thiohydroxamate method can also participate in ring-forming reactions (see Scheme 26).52b,s3 For example, irradiation of 129 results in the formation of compound 130 (82% yield). The outcome of this transformation is reminiscent of Stork s elegant radical cyclization/trapping processes (see Schemes 7 and 8), in that/botn alkene carbon atoms have become functionalized. / I... [Pg.407]

It is important to note here that both of the 5-exo radical cyclizations (133—>132—>131, Scheme 27) must proceed in a cis fashion the transition state leading to a strained mms-fused bicy-clo[3.3.0]octane does not permit efficient overlap between the singly occupied molecular orbital (SOMO) of the radical and the lowest unoccupied molecular orbital (LUMO) of the alkene. The relative orientation of the two side chains in the monocyclic radical precursor 134 is thus very significant because it dictates the relationship between the two outer rings (i. e. syn or anti) in the tricyclic product. The cis-anti-cis ring fusion stereochemistry of hirsutene would arise naturally from a cyclization precursor with trans-disposed side chain appendages (see 134). [Pg.409]

The (TMS)3Si radical addition to terminal alkenes or alkynes, followed by radical cyclization to oxime ethers, were also studied (Reaction 50). The radical reactions proceeded effectively by the use of triethylborane as a radical initiator to provide the functionalized pyrrolidines via a carbon-carbon bond-forming process. Yields of 79 and 63% are obtained for oxime ethers connected with an olefin or propargyl group, respectively. [Pg.141]

The attacking radical need not always be at carbon. Amidyl radical are known and give cyclization reactions. Aminyl radical cyclizations have been reported. Oxygen radical can be generated under photochemical conditions, and they add to alkenes in a normal manner. ... [Pg.1040]

Free radical cyclization of alkenes with tin or mercury halides... [Pg.1646]

Intramolecular enone-alkene cycloadditions are also possible. In the case of (3-(5-pentenyl) substituents, there is a general preference for exo-type cyclization to form a five-membered ring.195 This is consistent with the general pattern for radical cyclizations and implies initial bonding at the (3-carbon of the enone. [Pg.547]

The synthetic scope of radical cyclizations can be further extended by tandem trapping by electrophilic alkene. [Pg.979]

Osmium tetroxide used in combination with sodium periodate can also effect alkene cleavage.191 Successful oxidative cleavage of double bonds using ruthenium tetroxide and sodium periodate has also been reported.192 In these procedures the osmium or ruthenium can be used in substoichiometric amounts because the periodate reoxidizes the metal to the tetroxide state. Entries 1 to 4 in Scheme 12.18 are examples of these procedures. Entries 5 and 6 show reactions carried out in the course of multistep syntheses. The reaction in Entry 5 followed a 5-exo radical cyclization and served to excise an extraneous carbon. The reaction in Entry 6 followed introduction of the allyl group by enolate alkylation. The aldehyde group in the product was used to introduce an amino group by reductive alkylation (see Section 5.3.1.2). [Pg.1127]

Radical addition to alkenes has been used in cyclizations in aqueous media. Oshima and co-worker studied triethylborane-induced atom-transfer radical cyclization of iodoacetals and iodoacetates in water.121 Radical cyclization of the iodoacetal proceeded smoothly both in aqueous methanol and in water. Atom-transfer radical cyclization of allyl iodoacetate is much more efficient in water than in benzene or hexane. For instance, treatment of allyl iodoacetate with triethylborane in benzene or hexane at room temperature did not yield the desired lactone. In contrast, the compound cyclized much more smoothly in water and yielded the corresponding y-lactone in high yield (Eq. 3.31). [Pg.68]

The transformation of2-734 involves an initial generation of an organosamarium species 2-735 with subsequent nucleophilic addition to the lactone carbonyl. Presumably, a tetrahedral intermediate 2-736 is formed that collapses to yield the ketone 2-737. This reacts with Sml2 to give a ketyl radical 2-738, which undergoes an intramolecular S-exo radical cyclization reaction with the alkene moiety. The resultant... [Pg.159]

TMC ATRA reactions can also be conducted intramolecularly when alkyl halide and alkene functionalities are part of the same molecule. Intramolecular TMC ATRA or atom transfer radical cyclization (ATRC) is a very attractive synthetic tool because it enables the synthesis of functionalized ring systems that can be used as starting materials for the preparation of complex organic molecules [10,11], Furthermore, halide functionality in the resulting product can be very beneficial because it can be easily reduced, eliminated, displaced, converted to a Grignard reagent, or if desired serve as a further radical precursor. The use of copper-mediated ATRC in organic synthesis has been reviewed recently and some illustrative examples are shown in Scheme 3 [10,11,31,32,33],... [Pg.224]

A new entry to exocyclic dienes was reported by Sha who uncovered that a radical cyclization of the vinyl iodide 100 can lead to the formation of an exocyclic dienes fused with a tetrahydrofuran ring. The cyclization is proposed to proceed in a 5-(n-exo)-exo-dig fashion <00OL2011>. 3,4-Disubstituted tetrahydrofurans can also be constructed via the cyclization of O-stannyl ketyls and allylic 0-stannyI ketyls onto electron-rich or electron-poor alkenes <00TL8941>. [Pg.152]

Phosphorylated derivatives of /3-nitroalcohols, upon exposure to Bu3SnH and AIBN, afford /3-(phosphatoxy)alkyl radicals. These radicals undergo heterolytic cleavage of the phosphate group to afford an alkene radical cation which is trapped intramolecularly in a tandem polar/radical crossover sequence. Derivative 37 (Scheme 13), through a 6-exol 5-exo overall cyclization, afforded the indolizidine derivative 38 as an equimolecular mixture of two diastereoisomers <2003JA7942, 2002OL2573>. [Pg.374]

Curran2 has reviewed recent applications of the tin hydride method for initiation of radical chain reactions in organic synthesis (191 references). The review covers intermolecular additions of radicals to alkenes (Giese reaction) as well as intramolecular radical cyclizations, including use of vinyl radical cyclization. [Pg.313]

Relatively few kinetic data are available for the carbon-carbon bond forming reactions of alkene radical cations. Nevertheless, rate constants for the cyclization illustrated in Scheme 9, with generation of the alkene radical cation by the fragmentation method, have been measured. These cyclization rate constants are significantly faster than those of the corresponding neutral radicals [89]. [Pg.23]

Scheme 9 Cyclization and deprotonation of an alkene radical cation... Scheme 9 Cyclization and deprotonation of an alkene radical cation...
In a rare study of a radical cyclization of fragmentation-derived alkene radical cations, it was discovered that the stereochemistry of the precursor can have significant consequences on the outcome of the reaction. Thus, a gluco-... [Pg.30]

In the gluco case (Scheme 13) the radical cyclization, with its requirement for the formation of a czs-fused ring junction [129,130], takes place uneventfully on the opposite face of the alkene radical cation to the one shielded by the phosphate anion, whereas in the manno series cyclization is severely retarded by the presence of the phosphate group above the face of the radical cation on which cyclization must occur. This steric retardation of the cyclization step results in a breakdown of chain propagation and results in the longer reaction times observed. Furthermore, the retardation of the radical cyclization step in the manno case enables the alkene radical cation to take... [Pg.31]

In a rare example of the use of phenylselenides as radical precursors in the generation of alkene radical cations by the fragmentation approach, Giese and coworkers generated a thymidine C3/,C4/ radical cation by expulsion of diethyl phosphate. Trapping experiments were conducted with methanol and with allyl alcohol (Scheme 16), when nucleophilic attack was followed by radical cyclization [66]. [Pg.32]

A y-lactone was formed in excellent yield by the nucleophilic cyclization of a carboxylic acid onto an alkene radical cation generated from a (i-nilrophosphale under tin hydride conditions (Scheme 21) [139]. Related experiments employing the acetate group and an internal carboxylate nucleophile failed, emphasizing the very rapid collapse of the alkene radical cation/acetate ion pair [127]. [Pg.36]

An example of a 6-endo cyclization of an alcohol onto an alkene radical cation/phosphate anion pair has also been described (Scheme 22). In order to bring about fragmentation of the primary alkyl phosphate bond in this reaction it was necessary to work in a 1 1 mixture of benzene and acetonitrile [139,140],... [Pg.36]

The advantage of the nitro group as radical precursor is best seen in the context of intramolecular nucleophilic trapping of alkene radical cations by nitrogen nucleophiles, when no cyclization was observed prior to treatment... [Pg.36]


See other pages where Alkenes radical cyclization is mentioned: [Pg.691]    [Pg.383]    [Pg.388]    [Pg.390]    [Pg.115]    [Pg.978]    [Pg.1032]    [Pg.1040]    [Pg.1040]    [Pg.269]    [Pg.86]    [Pg.213]    [Pg.633]    [Pg.119]    [Pg.60]    [Pg.1]    [Pg.14]    [Pg.24]    [Pg.33]    [Pg.36]   
See also in sourсe #XX -- [ Pg.49 ]

See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Alkenes radical cyclizations

Alkenes radicals

Cyclization alkenes

Radical cyclization

© 2024 chempedia.info