Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic Voltammetric Experiments

FIGURE 2-1 Potential-time excitation signal in cyclic voltammetric experiment. [Pg.29]

FIGURE 2-3 Concentration distribution of the oxidized and reduced forms of the redox couple at different times during a cyclic voltammetric experiment corresponding to the initial potential (a), to the formal potential of the couple during the forward and reversed scans (b, d), and to the achievement of a zero reactant surface concentration (c). [Pg.30]

How does the increase of the scan rate affect the ratio of peak currents (backward/forward) in a cyclic voltammetric experiment involving a redox process followed by a chemical reaction ... [Pg.59]

One can then ask What is the rate at which the strongly bonded state is populated during the TPD and cyclic voltammetric experiments of Figures 5.2b and 5.2c The answer is clear It is the rate ofO2 supply to the catalyst, i.e. I/2F. [Pg.191]

Electrochemical measurements on polyaniline (PANI) produce a picture of the charge storage mechanism of conducting polymers which differs fundamentally from that obtained using PTh or PPy. In the cyclic voltammetric experiment one observes at least two reversible waves in the potential range between —0.2 and -)-1.23 V vs SCE. Above -1-1.0 V the charging current tends to zero. Capacitive currents and overoxidation effects, as with PPy and PTh, do not occur The striking... [Pg.28]

While cyclic voltammetric experiments provide thermodynamic and kinetic information on the charging processes (Heinze, 1986), only indirect information on the structure of the redox products is available. Fortunately, independent evidence can be obtained from spectroscopic experiments. [Pg.15]

Cyclic voltammetric experiments carried out in the aqueous solution of 21 or with 21-adsorbed electrodes achieved catalytic formation of molecular oxygen when the electrode potential was at 0.8 V vs SCE (119). It was proposed that the electrocatalytic generation of molecular oxygen occurs according to Eq. (10). [Pg.407]

If the nonlinear character of the kinetic law is more pronounced, and/or if more data points than merely the peak are to be used, the following approach, illustrated in Figure 1.18, may be used. The current-time curves are first integrated so as to obtain the surface concentrations of the two reactants. The current and the surface concentrations are then combined to derive the forward and backward rate constants as functions of the electrode potential. Following this strategy, the form of the dependence of the rate constants on the potential need not be known a priori. It is rather an outcome of the cyclic voltammetric experiments and of their treatment. There is therefore no compulsory need, as often believed, to use for this purpose electrochemical techniques in which the electrode potential is independent of time, or nearly independent of time, as in potential step chronoamperometry and impedance measurements. This is another illustration of the equivalence of the various electrochemical techniques, provided that they are used in comparable time windows. [Pg.48]

The evolution of a new set of electrochemical waves (as opposed to the gradual shifting of the redox couple) on addition of guest species may be due to a number of factors. If the complex formed has a particularly high stability constant and has a redox potential which is markedly different from that of the free ligand, a new set of waves may be observed. However, if the decomplexation kinetics of the complex formed is particularly slow on the electrochemical time scale then, as the potential is scanned between the vertex points during a cyclic voltammetric experiment, the solution complexed species will be stable over this time period and the two sets of waves will correspond to free ligand and complex. Therefore care should be taken to determine the cause of the evolution of a new set of electrochemical waves and... [Pg.8]

Fig. 5 Linear sweep and cyclic voltammetry (a) dotted lines five profiles respectively at various typical excitation signal (b) current response times, increasing time shown by arrows] for a and concentration profiles [(c) forward scan cyclic voltammetric experiment. Fig. 5 Linear sweep and cyclic voltammetry (a) dotted lines five profiles respectively at various typical excitation signal (b) current response times, increasing time shown by arrows] for a and concentration profiles [(c) forward scan cyclic voltammetric experiment.
Quantitative investigations of the kinetics of these a-coupling steps suffered because rate constants were beyond the timescale of normal voltammetric experiments until ultramicroelectrodes and improved electrochemical equipment made possible a new transient method calledjhst scan voltammetry [27]. With this technique, cyclic voltammetric experiments up to scan rates of 1 MV s are possible, and species with lifetimes in the nanosecond scale can be observed. Using this technique, P. Hapiot et al. [28] were the first to obtain data on the lifetimes of the electrogenerated pyrrole radical cation and substituted derivatives. The resulting rate constants for the dimerization of such monomers lie in the order of 10 s . The same... [Pg.611]

The study of hydrogen and deuterium electrosorption in palladium limited volume electrodes (LVE) was carried out by the same group in both acidic and basic solutions [124,130,134]. It was found that the hydrogen capacity, H (D)/Pd, measured electrochemically, depends significantly on sweep rate in cyclic voltammetric experiments and also on the thickness of the LVE. Two different mechanisms of hydrogen desorption, that is, the electrochemical oxidation and the nonelectrochemical recombination step, which take place in parallel within the Pd—LVE, have been postulated. [Pg.513]

An interesting finding in the CB7-MV2+ system is that, in clear contrast to host-guest systems involving CD hosts, the voltammetric data do not contain any indication that complex dissociation must precede any of the electron transfer processes. Furthermore, the electrochemistry of the inclusion complex is as fast—in the timescale accessible in these cyclic voltammetric experiments—as that of the free guest. This is clearly illustrated by the voltammograms depicted in Fig. 3.2, which show the comparative results of a scan-rate study on the MV2+/MV+ and CB7 MV2 + / 7 MV + redox couples. In both cases, the observed anodic and cathodic peak potentials are basically invariant as the scan rate is increased up to... [Pg.69]

The initial sweep peak current (amperes) for a reversible one-electron reduction at the electrode in the cyclic voltammetric experiment is given by... [Pg.729]

Derivatives of the general formula (7) in Table 6 have been successfully used as probases and their properties in this context are being further explored. In common with the azobenzenes and ethenetetracarboxylate esters, the fluoren-9-ylidene derivatives usually display two reversible one-electron peaks in cyclic voltammetric experiments. Although disproportionation is possible (cf. Scheme 12) it is the dianions which are the effective bases. It was shown early on that the radical-anions of such derivatives are long-lived in relatively acidic conditions (e.g. in DMF solution the first reduction peak of Ph C -.QCN) remains reversible in the presence of a 570-fold molar excess of acetic acid, at 0.1 V s ). Even the dianions are relatively weak bases, useful mainly for ylid formation from phosphonium and sulphonium salts (pKj s 11-15) they are not sufficiently basic to effect the Wittig-Homer reaction which involves deprotonation of phosphonate esters... [Pg.149]

The difficulty in judging the nature of the effective EGB has been referred to in the context of azobenzene-derived bases (Scheme 12 and discussion on p. 139). In those cases, in cyclic voltammetric experiments, the reversible first reduction peak becomes irreversible in the presence of weak acids with an approximate doubling of cathodic... [Pg.157]

Cyclic voltammetric methods, or other related techniques such as differential pulse polarography and AC voltammetry,3 provided a convenient method for the estimation of equilibrium constants for disproportionation or its converse, comproportionation. In this respect, the experimentally measured quantity of interest in a cyclic voltammetric experiment is E>A, the potential mid-way between the cathodic and anodic peak potentials. For a one-electron process, E,A is related to the thermodynamic standard potential Ea by equation (4).13 In practice, ,/2 = E° is usually a good approximation. [Pg.495]

Cyclic voltammetry provides a convenient method of recognizing such processes provided the lifetime of the intermediate is less than a minute or so. Consider an idealized reaction pathway (14) which involves the reversible one-electron reduction of a compound M. Of primary interest in the cyclic voltammetric experiment is the ratio of the back- and forward-peak currents, ipb/ip, and the dependence of this ratio upon the scan rate, v. [Pg.499]

If M is unstable then ipb/fpf will be less than unity. Its magnitude will depend upon the scan rate, the value of the first-order constant k, and the conditions of the experiment. At fast scan rates the ratio ipb/ ip, may approach one if the time gate for the decomposition of M is small compared with the half-life of M-, (In 2jk). As the temperature is lowered, the magnitude of k may be sufficiently decreased for full reversible behaviour to be observed. The decomposition of M- could involve the attack of a solution species upon it, e.g. an electrophile. In such cases, ipb/ipf, will of course be dependent upon the concentration of the particular substrate (under pseudo-first-order conditions, k is kapparent). Quantitative cyclic voltammetric and related techniques allow the evaluation of the rate constants for such electrochemical—chemical, EC, processes. At the limit, the electron-transfer process is completely irreversible if k is sufficiently large with respect to the rate of heterogeneous electron transfer the electrochemical and chemical steps are concerted on the time-scale of the cyclic voltammetric experiment.1-3... [Pg.499]

Numerous examples could be cited in which two or more suspected products of an electrode process exhibit similar electrochemical behavior. In other instances, the species that is stable during the time required to complete the cyclic voltammetric experiment may undergo a slow chemical reaction to give the product that is isolated. These problems arise sufficiently frequently that the identification of products and the determination of the product distribution are required. [Pg.629]

Electropolymerization and cyclic voltammetric experiments are performed with an EG G PARC, Model 173 potentiostat equipped with a Model 175 universal programmer and a Model 179 digital coulometer in conjunction with a Kipp and Zonen BD 91 XY/t recorder. All experiments are carried out using a conventional three-electrode cell. Instrumental setup for amperometric measurements ... [Pg.1136]

Figure 4.28 (a) Potential versus time profile in a cyclic voltammetric experiment, (b) The resulting current... [Pg.300]

Figure 4.29 Schematic diagram of the experimental apparatus for a cyclic voltammetric experiment. Figure 4.29 Schematic diagram of the experimental apparatus for a cyclic voltammetric experiment.
The cyclic voltammetric experiment can give a great deal of information about the redox activity of a compound and the stability and accessibility of its reduced or oxidised forms. For a fully chemically reversible process, ipa must equal rpc, i.e. all of the material oxidised at the electrode surface on the forward scan must be re-reduced on the reverse scan (or vice versa). If this condition does not hold true, then the process may be partially reversible (rpc < ipa) or irreversible (rpc = 0). Observation of processes that are not fully reversible implies decomposition or chemical reaction of the reduced or oxidised species and the ratio of ipa to /p(. will show a strong dependence on scan rate since the reverse current is related to the lifetime of the redox-generated material. Note that processes that are chemically reversible (in the sense that the reduced and oxidised species are both stable) may not be electrochemically reversible (a term that relates to the relative rates of forward and back electron transfer). Electrochemically reversible processes are characterised by a separation between the forward and reverse potential peaks of exactly 59 mV. [Pg.301]


See other pages where Cyclic Voltammetric Experiments is mentioned: [Pg.40]    [Pg.28]    [Pg.832]    [Pg.214]    [Pg.190]    [Pg.14]    [Pg.345]    [Pg.635]    [Pg.192]    [Pg.344]    [Pg.339]    [Pg.93]    [Pg.73]    [Pg.147]    [Pg.391]    [Pg.729]    [Pg.300]    [Pg.123]    [Pg.250]    [Pg.258]    [Pg.307]    [Pg.42]    [Pg.155]   


SEARCH



Cyclic experiment

Cyclic voltammetr

The Cyclic Voltammetric Experiment

Voltammetric

Voltammetric experiments

© 2024 chempedia.info