Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyanide substitution reactions

The oxidation of aldehydes to carboxylic acids by the lower valent manganese dioxide [68] is a very slow process, which requires a higher temperature [69]. Corey developed the most straightforward application of this reagent [70], which is particularly recommended for the conversion of a,(i-unsaturated aldehydes [70, 71], since it proceeds without double bond isomerization. Aromatic aldehydes can be converted into the corresponding esters [72]. The reaction involves the use of cyanide ions and proceeds via cyanohydrins. The latter are oxidized to a-ketonitriles, which undergo a cyanide substitution reaction with aUcoxide as the nucleophile to give the desired esters. [Pg.207]

Halogeno-l-methyl-l,2,3-triazoles undergo substitution reactions with amines, but the 4-halogeno analogs do not. 5-Chloro-l,4-diphenyl-l,2,3-triazole with sodium cyanide in DMSO gives the cyano derivative (63JCS2032). 1-Substituted 3-chloro- and 5-chloro-l,2,4-triazoles both react with amines. [Pg.105]

The reactions of pyridinium N-alkoxides (158-161) orpyridinium N-amides (162) with cyanide demonstrate a useful substitution reaction for pyridines. [Pg.331]

Heterocyclic structures analogous to the intermediate complex result from azinium derivatives and amines, hydroxide or alkoxides, or Grignard reagents from quinazoline and orgahometallics, cyanide, bisulfite, etc. from various heterocycles with amide ion, metal hydrides,or lithium alkyls from A-acylazinium compounds and cyanide ion (Reissert compounds) many other examples are known. Factors favorable to nucleophilic addition rather than substitution reactions have been discussed by Albert, who has studied examples of easy covalent hydration of heterocycles. [Pg.171]

Mechanistically it is an electrophilic aromatic substitution reaction. The electrophilic species (4—its exact structure is not known) is generated in a reaction of hydrogen cyanide and hydrogen chloride (gas) and a Lewis acid ... [Pg.133]

What product would you expect from a nucleophilic substitution reaction of (R)-l-bromo-l-phenylethane with cyanide ion, C=N, as nucleophile Show the stereochemistry of both reactant and product, assuming that inversion of configuration occurs. [Pg.362]

Rate constants for the substitution reactions of square-planar dithio-phosphates and dithiocarbonate complexes of Ni(II), Pd(II), and Pt(II), with ethylenediamine and cyanide ion as nucleophiles, have been measured in methanol. The results were compared with those obtained in previous investigations, and interpreted in terms of the stabilities of 5-coordinate species that are formed prior to substitution (377). [Pg.260]

A second group of aromatic substitution reactions involves aryl diazonium ions. As for electrophilic aromatic substitution, many of the reactions of aromatic diazonium ions date to the nineteenth century. There have continued to be methodological developments for substitution reactions of diazonium intermediates. These reactions provide routes to aryl halides, cyanides, and azides, phenols, and in some cases to alkenyl derivatives. [Pg.1003]

The nucleophilic substitution reaction of 1-chlorooctane (in decane) and sodium cyanide (in water) ... [Pg.451]

With potassium cyanide, a nucleophilic substitution reaction... [Pg.93]

The related zinc cuprates formed from diorganozinc reagents and copper(I) cyanide also undergo smooth SN2 substitution reactions with propargyl oxiranes in the presence of phosphines or phosphites (Scheme 2.12). These transformations can also be performed with catalytic amounts of the copper salt since no direct reaction between the organozinc reagent and the substrate interferes [31, 34], and therefore should also be applicable to functionalized organozinc compounds. [Pg.58]

Substitution reactions of cyanide with secondary alkyl halides are often accompanied by the formation of elimination products in variable amounts (Cook et al., 1974). The same holds for reactions of metal acetate complexes of crown ethers (Liotta et al., 1974). [Pg.345]

Displacement by cyanide works particularly well, and many other nucleophilic substitution reactions are enhanced by PTC. Most monovalent anions can be transferred, including alkoxides, phenoxides, thiocyanates, nitrates, nitrites, superoxides and all of the halides. Divalent anions are usually too hydrophilic to be transferred into the organic phase. [Pg.112]

The same phenomenon, i.e. that the secondary a-deuterium KIE is determined by the changes in only the shorter reacting bond in the SN2 transition state rather than by the nucleophile-leaving group distance, has been found in a completely different reaction system. Matsson, Westaway and co-workers (Matsson et al., 1996) used ku/k14 carbon incoming nucleophile, chlorine leaving group (Hill and Fry, 1962), and ku/ku a-carbon (Fry, 1970) KIEs to model the transition states for a series of SN2 reactions between p-substituted benzyl chlorides and labelled cyanide ion (reaction (17)). [Pg.167]

In the unconventional synthesis of thioethers (Scheme 4.11), cyanide ion is displaced from thiocyanates by carbanions [52, 53], which have been generated under phase-transfer catalytic conditions (cf. 4.1.12). Thiocyanates are readily obtained by a standard catalysed nucleophilic substitution reaction [4, 54-58] (see Table 4.19). Aryl thiocyanates are obtained from activated aryl halides [4, 57] (see Chapter 2). [Pg.136]

It is important to be able to look at a molecular structure and deduce the possible reactions it can undergo. Take an alkene, for example. It has a 7t bond that makes it electron-rich and able to attack electrophiles such as water, halogens and hydrogen halides in electrophilic addition reactions. Haloalkanes, on the other hand, contain polar carbon-halogen bonds because the halogen is more electronegative than carbon. This makes them susceptible to attack by nucleophiles, such as hydroxide, cyanide and alkoxide ions, in nucleophilic substitution reactions. [Pg.72]

Nucleophilic substitution reactions employing carbon as a nucleophile are important in synthetic chemistry in that they create a new C-C bond. A carbon nucleophile, of course, must be in the form of anionic carbon, or its equivalent. One of the simplest sources of anionic carbon is the cyanide anion. HCN is a weak acid (pATa 9.1) and forms a series of stable... [Pg.204]

Kenawy 64) immobilized ammonium and phosphonium peripheral functionalized dendritic branches on a montmorillonite supported chloromethylstyrene/methyl methacrylate copolymer (74-75). These polymer/montmorillonite-supported dendrimers were used as phase transfer catalysts (PTC) for the nucleophilic substitution reaction between -butyl bromide and thiocyanate, cyanide, and nitrite anions in a toluene or a benzene/water system. These PT catalysts could be recycled by filtration of the functionalized montmorillonite from the reaction mixture. Generally,... [Pg.128]

Examples of electrochemicaUy initiated metal ion substitution reactions have been described for the case of substitution of high-spin iron by cadmium ions [49, 50], high-spin iron by nickel, and silver by nickel [51] and high-spin iron ions [52]. The reasons for the proceeding of these electrochemicaUy initiated substitution reactions have been ascribed as well to the labilization of the cyanide ions in certain oxidation states of the metal ions of the involved PCMs. [Pg.710]

Mechanisms of Substitution Reactions of Cobalt (III) Cyanide Complexes... [Pg.30]

Heterocyclic amines have also been used as phase transfer catalysts. However, because these amines quaternize easily, the question is whether the operative catalyst is the tertiary amine or the quaternary ammonium salt formed in situ Furukawa et al.286 have shown that a methyl 2-pyridyl sulfoxide may be used as a phase transfer catalyst and promote substitution reactions between lithium chloride or sodium cyanide and benzyl bromide. According to the authors, the catalyst behaves as a cation complexer and not as a quaternary ammonium salt formed in situ by a Menschutkin reaction. [Pg.230]


See other pages where Cyanide substitution reactions is mentioned: [Pg.119]    [Pg.613]    [Pg.119]    [Pg.613]    [Pg.375]    [Pg.794]    [Pg.814]    [Pg.168]    [Pg.200]    [Pg.161]    [Pg.108]    [Pg.170]    [Pg.146]    [Pg.57]    [Pg.118]    [Pg.72]    [Pg.34]    [Pg.118]    [Pg.193]    [Pg.68]    [Pg.217]    [Pg.43]    [Pg.710]    [Pg.58]    [Pg.167]    [Pg.280]    [Pg.135]    [Pg.77]    [Pg.45]   
See also in sourсe #XX -- [ Pg.119 , Pg.120 ]




SEARCH



Cyanides reactions

From metal cyanides substitution reactions

© 2024 chempedia.info