Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyanation catalytic enantioselective

In addition to this, asymmetric 1,3-dipolar cyclization reactions of nitrones with olefins,40 41 catalytic enantioselective cyanation of aldehydes,42 catalytic enantioselective animation,43 and aza-Michael reactions44 have been reported, and high enantioselectivities are observed. [Pg.402]

Finally, several examples of only moderately effective (<75% ee) catalytic enantioselective cyanation of benzaldehyde derivatives have been reported recently [32-37],... [Pg.119]

Discovered in the middle of the 19th century, the Strecker reaction is one of the earliest atom-economic multicomponent reactions. Amino nitriles were simply obtained from ammonia, hydrogen cyanide and an aldehyde. These products are important intermediates for the synthesis of natural and unnatural a-aminoacids. Due to the ever-increased demand for enantioenri-chied a-aminoacids, the asymmetric Strecker reaction has emerged as a viable synthetic method. Since the first report published in 1996, the catalytic enantioselective cyanation of preformed imines was intensively studied and several excellent reviews were devoted to this topic. ... [Pg.155]

We developed various catalytic enantioselective cyanation and azidation reactions using chiral poly rare earth metal (RE) complexes derived from ligands 5-8 and TMSCN or TMSN3 as a stoichiometric nucleophile [43, 44]. General mechanism for those asymmetric catalyses is shown in Scheme 11. First, polymetallic complexes 9 containing defined higher order strucmres are generated via a reaction... [Pg.18]

Sn(OTf)2 can function as a catalyst for aldol reactions, allylations, and cyanations asymmetric versions of these reactions have also been reported. Diastereoselective and enantioselective aldol reactions of aldehydes with silyl enol ethers using Sn(OTf)2 and a chiral amine have been reported (Scheme SO) 338 33 5 A proposed active complex is shown in the scheme. Catalytic asymmetric aldol reactions using Sn(OTf)2, a chiral diamine, and tin(II) oxide have been developed.340 Tin(II) oxide is assumed to prevent achiral reaction pathway by weakening the Lewis acidity of Me3SiOTf, which is formed during the reaction. [Pg.434]

Optically pure cyanohydrins serve as highly versatile synthetic building blocks [24], Much effort has, therefore, been devoted to the development of efficient catalytic systems for the enantioselective cyanation of aldehydes and ketones using HCN or trimethylsilyl cyanide (TMSCN) as a cyanide source [24], More recently, cyanoformic esters (ROC(O)CN), acetyl cyanide (CH3C(0)CN), and diethyl cyanophosphonate have also been successfully employed as cyanide sources to afford the corresponding functionalized cyanohydrins. It should be noted here that, as mentioned in Chapter 1, the cinchona alkaloid catalyzed asymmetric hydrocyanation of aldehydes discovered... [Pg.81]

Catalytic asymmetric cyanation using 20 mol % of the complex of Ti(Oz-Pr)4 with diisoporpyl tartrate (10 Fig. 1) was reported by Oguni [42,43]. The mixture of Ti(Oi-Pr)4 and 10 (Fig. l)did not exhibit high enantioselectivity. Moreover, the selectivity and the reactivity were still low when the formed isopropyl alcho-hol was removed under reduced pressure using the freeze-dry method. High reactivity and an enantioselectivity of up to 90% were observed when the isopropyl alcohol was again added to the freeze-dried titanium complex. [Pg.933]

Johnson s group developed a catalytic asymmetric cyanation/1,2-Brook rearrangement/C-acylation of acylsilanes with cyanoformates (Scheme 19.14). In the presence of (i ,/ )-(salen)Al 19, the corresponding cyanohydrin trimethylsilyl ethers of a-keto esters were obtained in moderate to good enantioselectivities (61-82% enantiomeric excess). Access to chiral (silyloxy)nitrile anions is facilitated by metal cyanide-promoted Brook rearrangement reaction of acylsilanes. [Pg.176]

A multicomponent bifunctional catalytic system based on a titanium complex was also used for the efficient enantioselective cyanation of aldehydes with ethyl cyanoformate [221]. The catalyst was readily prepared by the reaction of Ti(O Pr)4 with (S)-6,6 -Br2BINOL in combination with cinchonine and (lR,2S)-(—)-N-methylephedrine. As shown in Scheme 14.91, the optimized catalyst combination (10 mol%) promotes the reaction smoothly to afford the desired cyanohydrins ethyl carbonates in moderate to excellent isolated yields (up to 95%) with high enantioselectivities (up to 94% ee). Although the mechanistic aspects... [Pg.245]

Scheme 18 Proposed catalytic cycle of enantioselective conjugate cyanation promoted by a strontium complex... Scheme 18 Proposed catalytic cycle of enantioselective conjugate cyanation promoted by a strontium complex...
Asymmetric phase-transfer catalytic addition of cyanide to C=N, C=0, and C=C bonds has been recently explored, which has been demonstrated to be an efficient method toward the synthesis of a series of substituted chiral nitriles. In this context, Maraoka and coworkers disclosed an enantioselective Strecker reaction of aldimines by using aqueous KCN [140]. In this system, the chiral quaternary ammonium salts (R)-36e bearing a tetranaphthyl backbone were found to be remarkably efficient catalysts (Scheme 12.25). Subsequently, this phase-transfer-catalyzed asymmetric Strecker reaction was further elaborated by use of a-amidosulfones as precursor of N-arylsulfonyl imines. Interestingly, the reaction could be conducted with a slight excess of potassium cyanide [141] or acetone cyanohydrin [40] as cyanide source, and good to high enantioselectivities were observed. In contrast, the asymmetric phase-transfer-catalytic cyanation of aldehydes led to the cyanation products with only moderate enantioselectivity [142]. [Pg.459]

The enantioselective conjugate cyanations of electron-deficient alkenic acceptors were also reported by Ricci et al. [42], Deng et al. [51], and Shibata et al. [30] with cinchona-derived phase-transfer catalysts. Moreover, Deng and Shibata applied these conjugate additions of acetone cyanohydrin to develop the enantioselective catalytic routes to chiral dihydropyridazinones, pyrollines, and pyrrohdines, which are the core units of many bioactive compounds (Scheme 12.26). [Pg.459]


See other pages where Cyanation catalytic enantioselective is mentioned: [Pg.408]    [Pg.135]    [Pg.377]    [Pg.120]    [Pg.122]    [Pg.27]    [Pg.109]    [Pg.214]    [Pg.252]    [Pg.82]    [Pg.229]    [Pg.230]    [Pg.236]    [Pg.553]    [Pg.556]    [Pg.936]    [Pg.159]    [Pg.29]    [Pg.153]    [Pg.220]    [Pg.157]    [Pg.171]    [Pg.148]    [Pg.26]   
See also in sourсe #XX -- [ Pg.377 ]




SEARCH



Catalytic cyanation

Cyanate

Cyanates

Cyanation

Cyanations

Enantioselective cyanation

© 2024 chempedia.info