Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cuprates synthesis

Several other novel strategies have been employed for the synthesis of superconducting cuprates some of them were mentioned earlier while discussing the various methods. Especially noteworthy are the use of the combustion method and the alkali-flux method for cuprate synthesis. Superconducting infinite-layered cuprates seem to be possible only when prepared under high pressures because of bonding (structural) considerations [87, 88]. In Table 7 we list the various cuprate superconductors along with their properties and the preferred methods of synthesis. [Pg.35]

Stang, P. J., Blume, T. and Zhdankin, V. V. 1993. Synthesis of enediynes by reaction of bicy-cloalkenyldiiodonium salts with lithium alkynyl cuprates. Synthesis 1 35-36. [Pg.215]

Narlikar, A. (2001). Essential Chemistry of High-Tc Cuprate Synthesis through the Solution Precursor Methods, In Studies of High Temperature Superconductors, Nova Science Publishers, New York, ISBN 1-59033-026-9... [Pg.503]

The methodology used in the preparation of RU 486 (84) and other ll -steroids is shown. Conjugate addition of a cuprate reagent to the a,P-unsaturated epoxide (85) provides the liP-substituted steroid (86) stereospecificaHy (131). Subsequent steps lead to the synthesis of RU 486 (84). [Pg.218]

Since this original synthesis, a great number of improvements (191—201) have been made in the stereoselective preparation and derivatization of the CO-chain precursor, in cuprate reagent composition and preparation, in protecting group utilization, and in the preparation and resolution of hydroxycyclopentenones. Illustration of some of the many improvements are seen in a synthesis (202) of enisoprost, a PGE analogue. The improvements consist of a much more efficient route to the enone as well as modifications in the cuprate reactions. Preparation of the racemic enone is as follows ... [Pg.161]

A number of alternative multi-step procedures for the synthesis of a-tert-alkyl ketones are known, none of which possess wide generality. A previous synthesis of 2-tert-penty1cyclopentanone involved reaction of N-1-cyclopentenylpyrrol 1 dine with 3-chloro-3-methy1-l-butyne and reduction of the resulting acetylene (overall yield 46 ). However, all other enamines tested afford much lower yields. Cuprate addition to unsaturated ketones may be useful in certain cases. Other indirect methods have been briefly reviewed. ... [Pg.99]

The synthetic problem is now reduced to cyclopentanone 16. This substance possesses two stereocenters, one of which is quaternary, and its constitution permits a productive retrosynthetic maneuver. Retrosynthetic disassembly of 16 by cleavage of the indicated bond furnishes compounds 17 and 18 as potential precursors. In the synthetic direction, a diastereoselective alkylation of the thermodynamic (more substituted) enolate derived from 18 with alkyl iodide 17 could afford intermediate 16. While trimethylsilyl enol ether 18 could arise through silylation of the enolate oxygen produced by a Michael addition of a divinyl cuprate reagent to 2-methylcyclopentenone (19), iodide 17 can be traced to the simple and readily available building blocks 7 and 20. The application of this basic plan to a synthesis of racemic estrone [( >1] is described below. [Pg.162]

The optically active iodide 153 (Scheme 43) can be conveniently prepared from commercially available methyl (S)-(+)-3-hydroxy-2-methylpropionate (154) (see Scheme 41). At this stage of the synthesis, our plan called for the conversion of 153 to a nucleophilic organometallic species, with the hope that the latter would combine with epoxide 152. As matters transpired, we found that the mixed higher order cuprate reagent derived from 153 reacts in the desired and expected way with epoxide 152, affording alcohol 180 in 88% yield this regioselective union creates the C12-C13 bond of rapamycin. [Pg.608]

The conversion of a thiolactone to a cyclic ether can also be used as a key step in the synthesis of functionalized, stereochemically complex oxacycles (see 64—>66, Scheme 13). Nucleophilic addition of the indicated higher order cuprate reagent to the C-S double bond in thiolactone 64 furnishes a tetrahedral thiolate ion which undergoes smooth conversion to didehydrooxepane 65 upon treatment with 1,4-diiodobutane and the non-nucleophilic base 1,2,2,6,6-pentamethylpiperidine (pempidine).27 Regio- and diastereoselective hydroboration of 65 then gives alcohol 66 in 89 % yield after oxidative workup. Versatile vinylstannanes can also be accessed from thiolactones.28 For example, treatment of bis(thiolactone) 67 with... [Pg.746]

Especially in the early steps of the synthesis of a complex molecule, there are plenty of examples in which epoxides are allowed to react with organometallic reagents. In particular, treatment of enantiomerically pure terminal epoxides with alkyl-, alkenyl-, or aryl-Grignard reagents in the presence of catalytic amounts of a copper salt, corresponding cuprates, or metal acetylides via alanate chemistry, provides a general route to optically active substituted alcohols useful as valuable building blocks in complex syntheses. [Pg.290]

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]

In some cases, if necessary, a C(3)-regioselective addition of cuprate can be accomplished by the use of a sterically demanding protecting group - such as an -OTr or -OMMTr group - on C(l), as described in the synthesis of the polypropionate segment present in (-)-amphidinolide P and (+)-amphidinolide K [54]. [Pg.290]

For use of other organocopper reagents in converting carboxylic acid chlorides to ketones, see G. H. Posner and C. E. Whitten, Tetrahedron Lett., 1815 (1973) G. H. Posner, C. E. Whitten, and P. E. McFarland, J. Amer. Chem. Soc., 94, 5106 (1972). For a recent report on direct and convenient preparation of lithium phenylthio (alkyl)-cuprate reagents, see G H Posner, D J Brunelle, and L. Sinoway, Synthesis, 662 (1974). [Pg.127]

Scheme 4.10 gives some examples of application of alkyne carboalumination in synthesis. The reaction in Entry 1 was carried out as part of a synthesis of the immunosuppressant drug FK-506. The vinyl alane was subsequently transmetallated to a cuprate reagent (see Chapter 8). In Entry 2, the vinyl alane was used as a nucleophile for opening an epoxide ring and extending the carbon chain by two atoms. In Entries 3 to 5, the vinyl alane adducts were converted to vinyl iodides. In Entry 6, the vinyl alane was converted to an ate reagent prior to reaction with formaldehyde. [Pg.356]

The synthesis in Scheme 13.41 is also built on the desymmetrization concept but uses a very different intermediate. cA-5,7-Dimethylcycloheptadiene was acetoxylated with Pd(OAc)2 and the resulting all-cA-diacetate intermediate was enantioselectively hydrolyzed with a lipase to give a monoacetate that was protected as the TBDMS ether. An anti Sw2 displacement by dimethyl cuprate established the correct configuration of the C(2) methyl substituent. Oxidative ring cleavage and lactonization gave the final product. [Pg.1202]

Formation of the very unstable dehydroalanine derivatives A p-dimethylaminophe-nyl- and Af-p-nitrophenyhnethylenedehydroalanine methyl ester could only be verified by -NMR. Because of Michael-type reactions with cuprates, the iV-arylmethylenedehy-droalanine methyl esters have been applied as building blocks in the synthesis of amino acids.[18]... [Pg.371]

Nicolas, E., Russell, K. C., and Hruby, V. J. (1993). Asymmetric 1,4-addition of organo-cuprates to chiral a, b-unsaturated N-Acyl-4-phenyl-2-oxazolidinones A new approach to the synthesis of chiral b-branched carboxylic acids. J. Org. Chem. 58, 766—770. [Pg.353]

An alternative method to prepare (Mormyl esters uses different building blocks to assemble the 1,4-dicarbonyl system and is complementary in many cases.10 Base-catalyzed addition of nitromefhane to a, J-unsaturated esters, followed by a variation of the Nef reaction, provides y-dialkoxy-substituted esters. The scope of this sequence has not yet been explored. Another approach involves cuprate additions to norephedrine-derived 2-alkenyloxazolidines this process allows small-scale synthesis of several p-formyl esters in optically active form (ee up to 95%).11... [Pg.234]

A number of pyridazines have been prepared by standard condensations of enediones with hydrazine but a general synthesis of the intermediate enediones is notable. This involved iodine-copper exchange of an iodoenone 3, followed by reaction of the resulting cuprate with acid chlorides. However, only a few of these enediones were actually converted into pyridazines <06OL1941>. [Pg.385]

Stereodehned alkenyl cuprates add to alkynes in syn fashion to result in 1,3-dienes of predictable stereochemistry288. Naso and coworkers used this method for the synthesis... [Pg.456]

Dieter developed a flexible two step synthesis of substituted pyrroles involving initial Beak deprotonation of /ert-butoxycarbonyl (Boc) amines 36 followed by addition of CuX-2LiCl (X = -Cl, -CN) to afford a-aminoalkylcuprates. Such cuprates undergo conjugate addition reactions to a,(3-alkynyl ketones affording a,(3-enones 37, which upon treatment with PhOH/TMSCl undergo carbamate deprotection and intramolecular cyclization to afford the pyrroles 38 . [Pg.114]

Heterometallic alkali metal phosphide complexes with transition metals have also been reported. The complex [(Cy2P)3Hf(ju.-PCy2)2Li (DME)] results from the reaction of LiPCy2 with HfCl4(THF) (98). This complex persists in solution. Jones et al. have reported the synthesis and reactivity toward a range of electrophiles of a series of lithium di-t-butylphosphido(alkyl)cuprates [RCu(PBu2)Li] (R = Me,... [Pg.65]

Scheme 54 shows the synthesis reported by Cox et al. of the pyrazoline compound 198 [98]. The Weinreb amide (e.g., 199) was reacted with a terminal alkyne followed by a reaction of the resulting alkyl ketone (200) with an aryl cuprate to produce the pyrazoline 198. Cox et al. employed the use of microwave technology in this reaction. Kidwai and Misra also employed microwave technology to produce pyrazoline compounds [99]. [Pg.60]

In addition to transition metals, recent work has demonstrated that strong Lewis acids will catalyze the addition of silanes to alkynes in both an intra- and an intermolecular fashion.14,14a-14c The formation of vinylsilanes from alkynes is possible by other means as well, such as the synthetically important and useful silylcupration15,15a of alkynes followed by cuprate protonation to afford vinylsilanes. These reactions provide products which can be complementary in nature to direct hydrometallation. Alternatively, modern metathesis catalysts have made possible direct vinylsilane synthesis from terminal olefins.16,16a... [Pg.790]


See other pages where Cuprates synthesis is mentioned: [Pg.697]    [Pg.697]    [Pg.697]    [Pg.697]    [Pg.185]    [Pg.656]    [Pg.675]    [Pg.697]    [Pg.697]    [Pg.697]    [Pg.697]    [Pg.185]    [Pg.656]    [Pg.675]    [Pg.276]    [Pg.159]    [Pg.160]    [Pg.434]    [Pg.202]    [Pg.11]    [Pg.162]    [Pg.156]    [Pg.1228]    [Pg.109]    [Pg.115]    [Pg.241]    [Pg.164]    [Pg.253]    [Pg.152]    [Pg.51]    [Pg.432]   
See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.119 ]

See also in sourсe #XX -- [ Pg.119 ]

See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Bismuth cuprates synthesis

Cuprates in organic synthesis

Cuprates, in synthesis

Thallium cuprates synthesis

© 2024 chempedia.info