Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CTBN carboxyl-terminated

CTBN Carboxyl-Terminated Butadiene Acrylonitrile Rubber... [Pg.211]

CTBN carboxyl-terminated butadiene-acrylonitrile rubber DETA diethylenetriamine... [Pg.46]

CTBN Carboxyl terminated butadiene acrylonitrile rubber... [Pg.658]

CTBN Carboxyl-terminated copolymer of butadiene and acrylonitrile... [Pg.386]

Abbreviations HIPS, high-impact polystyrene ABS, acrylonitrile-butadiene-styrene graft copolymer EPDM, ethylene propylene-diene copolymer CTBN, carboxyl terminated butadiene nitrile telomer M = 5000 g/mol) PC, polyearbonate SBS, styrene-butadiene-styrene triblock copolymer SIS, styrene isoprene styrene tribloek copolymer SEBS, SBS with hydrogenated center block PU, segmented (block copolymer) polyurethanes PDMS, poly(dimethyl siloxane) FIFE, polytetralluoroethylene. [Pg.746]

CTBN, carboxyl terminated butadiene acrylonitrile NA, not licable. [Pg.432]

Composite Particles, Inc. reported the use of surface-modified rubber particles in formulations of thermoset systems, such as polyurethanes, polysulfides, and epoxies [95], The surface of the mbber was oxidized by a proprietary gas atmosphere, which leads to the formation of polar functional groups like —COOH and —OH, which in turn enhanced the dispersibility and bonding characteristics of mbber particles to other polar polymers. A composite containing 15% treated mbber particles per 85% polyurethane has physical properties similar to those of the pure polyurethane. Inclusion of surface-modified waste mbber in polyurethane matrix increases the coefficient of friction. This finds application in polyurethane tires and shoe soles. The treated mbber particles enhance the flexibility and impact resistance of polyester-based constmction materials [95]. Inclusion of treated waste mbber along with carboxyl terminated nitrile mbber (CTBN) in epoxy formulations increases the fracture toughness of the epoxy resins [96]. [Pg.1055]

CTBN type elastomers (carboxyl-terminated butadiene acrylonitrile) used to toughen this epoxy system. The Tg peak of the elastomer (-30°Q was shifted to higher temperatures suggesting that electron interaction resulted in crosslinking. The fact that the Tg peak disappeared at 10 rads suggests that crosslinking in the elastomer was extensive at high dose levels. [Pg.232]

Piperidine and carboxyl terminated butadiene acrylonitrile copolymer (CTBN) at 75 °C. [Pg.101]

A 3300 molecular weight carboxyl terminated 80-20 butadiene-acrylonitrile random copolymer designated CTBN (I) (Figure 3). [Pg.543]

It is obvious from these data that CTBN (the carboxyl terminated butadiene-acrylonitrile copolymer) is the most effective modifier, and therefore it was selected for further study. As the concentration of the elastomer was increased to levels up to 100 parts, the impact also increased. The data in Table II show that the room temperature impact of ERL-4221 increased from 40 inch-lbs to greater than 320 inch-lbs by adding 100 phr or 33 wt % of CTBN. At very low temperatures ( —160°F) the impact of the system modified with 60 parts, or 23 wt %, of CTBN was 120 inch-lbs. These impact improvements appear to be directly proportional to the concentration of the elastomer modifier. [Pg.544]

Table II. Gardner Impact of ERL-4221/HHPA Modified with Carboxyl Terminated Elastomer (CTBN)... Table II. Gardner Impact of ERL-4221/HHPA Modified with Carboxyl Terminated Elastomer (CTBN)...
Modified with Carboxyl Terminated Elastomer (CTBN)... [Pg.547]

Effect of Molecular Configuration of Elastomer. The extent of the impact and strength improvements of ERL-4221 depends on the chemical structure and composition of the elastomer modifier. The data shown in Table I indicate that the carboxyl terminated 80-20 butadiene-acrylonitrile copolymer (CTBN) is the most effective toughening and reinforcing agent. The mercaptan terminated copolymer (MTBN) is considerably less effective as far as tensile strength and heat distortion temperature are concerned. The mercaptan groups are considerably less reactive with epoxides than carboxyls (4), and this difference in the rate of reaction may influence the extent of the epoxy-elastomer copolymerization and therefore the precipitation of the rubber as distinct particles. [Pg.555]

The carboxyl terminated polybutadiene (C-3000) is about equally effective to CTBN in heat distortion temperature and impact but considerably less effective in strength. From the haze data (the percent haze of ERL-4221 modified with 10 phr of CTBN and C-3000 were 17 and 85% respectively) it is quite clear that this elastomer (C-3000) is highly incompatible with the epoxy-hardener system in the cured state. A 2000 molecular weight polybutadiene elastomer, containing no carboxyl groups, was completely incompatible with the epoxy system and segregated in the cured state. [Pg.555]

Epoxy-nitrile Nitrile-epoxy adhesives are composed of solid epoxy resin modified with carboxyl-terminated butadiene nitrile (CTBN) copolymer. The CBTN is introduced into die epoxy resin at elevated temperatures. The modification provides toughness and high peel strength without sacrificing heat and chemical resistance. The film adhesives are widely used in the aerospace industry in the construction of jetliners. [Pg.124]

The epoxy-nitrile adhesives were introduced commercially in the late 1960s. They consisted primarily of DGEBA epoxy resin modified with carboxyl-terminated butadiene nitrile (CTBN) rubber. These first nitrile copolymers were available from B.F. Goodrich under the trade name of Hycar. The most convenient form of epoxy nitrile adhesive, especially when one is bonding large parts (aircraft structures), is a supported film. However, solvent solutions of epoxy-nitrile adhesives have also been commercially available. [Pg.125]

FIGURE 8.6 Chemical structure of carboxyl-terminated butadiene acrylonitrile (CTBN). [Pg.147]

However, newer adhesives systems having moderate temperature resistance have been developed with improved toughness but without sacrificing other properties. When cured, these structural adhesives have discrete elastomeric particles embedded in the matrix. The most common toughened hybrids using this concept are acrylic and epoxy systems. The elastomer is generally a amine- or carboxyl-terminated acrylonitrile butadiene copolymer (ATBN and CTBN). [Pg.240]

Materials. Hycar CTBN is a registered trade name of a carboxyl-terminated, liquid copolymer of butadiene and acrylonitrile (B. F. Goodrich Chemical Co.). For most purposes it can be represented structurally as ... [Pg.330]

Fig. 13. TXT cure diagram temperature of cure vs. the times to phase separation (doud point), gelation and vitrification for a neat and two rubber-modified systems. of the neat system is also included. The systems studied were DER331/TMAB O, gelation , vitrificaticm modified with IS parts rubber per hundred parts epoxy 1) pr eacted carboxyl-terminated butadiene-acrylonitrile (CTBN) copolymer containing 17% acrylonitrile (K-293, Spencer Kellog Co.) A, phase separation , gelation , vitrification, and 2) polytetramethylene oxide terminated with anmiatic amine (ODA2000, Polaroid Corp.) A. phase separation O, gelation O, vitrification. (DER331/TMAB/ K-293 data from Ref. )... Fig. 13. TXT cure diagram temperature of cure vs. the times to phase separation (doud point), gelation and vitrification for a neat and two rubber-modified systems. of the neat system is also included. The systems studied were DER331/TMAB O, gelation , vitrificaticm modified with IS parts rubber per hundred parts epoxy 1) pr eacted carboxyl-terminated butadiene-acrylonitrile (CTBN) copolymer containing 17% acrylonitrile (K-293, Spencer Kellog Co.) A, phase separation , gelation , vitrification, and 2) polytetramethylene oxide terminated with anmiatic amine (ODA2000, Polaroid Corp.) A. phase separation O, gelation O, vitrification. (DER331/TMAB/ K-293 data from Ref. )...
Additives. Acrylonitrile-butadiene rubbers were provided by BFGood-rich (Brecksville, OH). The amino-terminated butadiene-acrylonitrile (ATBN) rubber was obtained by reacting carboxyl-terminated butadiene-acrylonitrile (CTBN) with an excess diamine, Unilink 4200 (from UOP, El Dorado Hills, CA) consequently, free diamine molecules always remained in the rubber. The rubbers have almost the same molar mass but different end groups, which have been characterized in a previous work (20). Their structures are given in Chart I, and they are described in Table I. The two poly(ether sulfone)s (PESs) (Victrex, from ICI, United Kingdom) used in this study are described in Table II. [Pg.187]


See other pages where CTBN carboxyl-terminated is mentioned: [Pg.374]    [Pg.135]    [Pg.572]    [Pg.241]    [Pg.595]    [Pg.67]    [Pg.374]    [Pg.135]    [Pg.572]    [Pg.241]    [Pg.595]    [Pg.67]    [Pg.221]    [Pg.286]    [Pg.330]    [Pg.189]    [Pg.110]    [Pg.147]    [Pg.329]    [Pg.161]    [Pg.1392]   


SEARCH



CTBN

CTBNs

Carboxyl terminal

Carboxyl termination

© 2024 chempedia.info