Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxyl terminated butadiene acrylonitrile CTBN

However, newer adhesives systems having moderate temperature resistance have been developed with improved toughness but without sacrificing other properties. When cured, these structural adhesives have discrete elastomeric particles embedded in the matrix. The most common toughened hybrids using this concept are acrylic and epoxy systems. The elastomer is generally a amine- or carboxyl-terminated acrylonitrile butadiene copolymer (ATBN and CTBN). [Pg.240]

Fig. 35. Dependence of fracture energy on the modifier composition (CTBN 1300 X 9 = carboxyl-tenninated acrylonitrile, acrylic acid and butadiene rubber with 18% acrylonitrile and 2% acrylic acid contents CTBN 1300x 13 = carboxyl-terminated acrylonitrile, butadiene rubber with 26% acrylonitrile content) (Reprinted from Journal of Materials Science, 27, T.K. Chen, Y.H. Jan, Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution, 111-121, Copyright (1992), with kind permission from Chapman Hall, London, UK)... Fig. 35. Dependence of fracture energy on the modifier composition (CTBN 1300 X 9 = carboxyl-tenninated acrylonitrile, acrylic acid and butadiene rubber with 18% acrylonitrile and 2% acrylic acid contents CTBN 1300x 13 = carboxyl-terminated acrylonitrile, butadiene rubber with 26% acrylonitrile content) (Reprinted from Journal of Materials Science, 27, T.K. Chen, Y.H. Jan, Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution, 111-121, Copyright (1992), with kind permission from Chapman Hall, London, UK)...
CTBN type elastomers (carboxyl-terminated butadiene acrylonitrile) used to toughen this epoxy system. The Tg peak of the elastomer (-30°Q was shifted to higher temperatures suggesting that electron interaction resulted in crosslinking. The fact that the Tg peak disappeared at 10 rads suggests that crosslinking in the elastomer was extensive at high dose levels. [Pg.232]

CTBN Carboxyl-Terminated Butadiene Acrylonitrile Rubber... [Pg.211]

Piperidine and carboxyl terminated butadiene acrylonitrile copolymer (CTBN) at 75 °C. [Pg.101]

CTBN carboxyl-terminated butadiene-acrylonitrile rubber DETA diethylenetriamine... [Pg.46]

A 3300 molecular weight carboxyl terminated 80-20 butadiene-acrylonitrile random copolymer designated CTBN (I) (Figure 3). [Pg.543]

It is obvious from these data that CTBN (the carboxyl terminated butadiene-acrylonitrile copolymer) is the most effective modifier, and therefore it was selected for further study. As the concentration of the elastomer was increased to levels up to 100 parts, the impact also increased. The data in Table II show that the room temperature impact of ERL-4221 increased from 40 inch-lbs to greater than 320 inch-lbs by adding 100 phr or 33 wt % of CTBN. At very low temperatures ( —160°F) the impact of the system modified with 60 parts, or 23 wt %, of CTBN was 120 inch-lbs. These impact improvements appear to be directly proportional to the concentration of the elastomer modifier. [Pg.544]

Effect of Molecular Configuration of Elastomer. The extent of the impact and strength improvements of ERL-4221 depends on the chemical structure and composition of the elastomer modifier. The data shown in Table I indicate that the carboxyl terminated 80-20 butadiene-acrylonitrile copolymer (CTBN) is the most effective toughening and reinforcing agent. The mercaptan terminated copolymer (MTBN) is considerably less effective as far as tensile strength and heat distortion temperature are concerned. The mercaptan groups are considerably less reactive with epoxides than carboxyls (4), and this difference in the rate of reaction may influence the extent of the epoxy-elastomer copolymerization and therefore the precipitation of the rubber as distinct particles. [Pg.555]

FIGURE 8.6 Chemical structure of carboxyl-terminated butadiene acrylonitrile (CTBN). [Pg.147]

Materials. Hycar CTBN is a registered trade name of a carboxyl-terminated, liquid copolymer of butadiene and acrylonitrile (B. F. Goodrich Chemical Co.). For most purposes it can be represented structurally as ... [Pg.330]

Fig. 13. TXT cure diagram temperature of cure vs. the times to phase separation (doud point), gelation and vitrification for a neat and two rubber-modified systems. of the neat system is also included. The systems studied were DER331/TMAB O, gelation , vitrificaticm modified with IS parts rubber per hundred parts epoxy 1) pr eacted carboxyl-terminated butadiene-acrylonitrile (CTBN) copolymer containing 17% acrylonitrile (K-293, Spencer Kellog Co.) A, phase separation , gelation , vitrification, and 2) polytetramethylene oxide terminated with anmiatic amine (ODA2000, Polaroid Corp.) A. phase separation O, gelation O, vitrification. (DER331/TMAB/ K-293 data from Ref. )... Fig. 13. TXT cure diagram temperature of cure vs. the times to phase separation (doud point), gelation and vitrification for a neat and two rubber-modified systems. of the neat system is also included. The systems studied were DER331/TMAB O, gelation , vitrificaticm modified with IS parts rubber per hundred parts epoxy 1) pr eacted carboxyl-terminated butadiene-acrylonitrile (CTBN) copolymer containing 17% acrylonitrile (K-293, Spencer Kellog Co.) A, phase separation , gelation , vitrification, and 2) polytetramethylene oxide terminated with anmiatic amine (ODA2000, Polaroid Corp.) A. phase separation O, gelation O, vitrification. (DER331/TMAB/ K-293 data from Ref. )...
Additives. Acrylonitrile-butadiene rubbers were provided by BFGood-rich (Brecksville, OH). The amino-terminated butadiene-acrylonitrile (ATBN) rubber was obtained by reacting carboxyl-terminated butadiene-acrylonitrile (CTBN) with an excess diamine, Unilink 4200 (from UOP, El Dorado Hills, CA) consequently, free diamine molecules always remained in the rubber. The rubbers have almost the same molar mass but different end groups, which have been characterized in a previous work (20). Their structures are given in Chart I, and they are described in Table I. The two poly(ether sulfone)s (PESs) (Victrex, from ICI, United Kingdom) used in this study are described in Table II. [Pg.187]

CTBN Carboxyl terminated butadiene acrylonitrile rubber... [Pg.658]

Fig. 13. Experimental CPC (A) and calculated binodal (broken curve) and spinodal (dotted curve) curves for a binary system composed of a DGEBA-based epoxy monomer (M = 479 gmol ) and a carboxyl-terminated butadiene-acrylonitrile rubber (CTBN) (Reprinted from Polymer, 30, D. Verchere, H. Sautereau, J.P. Pascault, S.M. Mos-chiar, C.C. Riccardi, R.J.J. Williams, Miscibility of epoxy monomers with carboxyl-terminated butadiene-acrylonitrile random copolymers, 107 -115, Copyright (1989), with kind permission from Butterworth-Heinemann journals, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK)... Fig. 13. Experimental CPC (A) and calculated binodal (broken curve) and spinodal (dotted curve) curves for a binary system composed of a DGEBA-based epoxy monomer (M = 479 gmol ) and a carboxyl-terminated butadiene-acrylonitrile rubber (CTBN) (Reprinted from Polymer, 30, D. Verchere, H. Sautereau, J.P. Pascault, S.M. Mos-chiar, C.C. Riccardi, R.J.J. Williams, Miscibility of epoxy monomers with carboxyl-terminated butadiene-acrylonitrile random copolymers, 107 -115, Copyright (1989), with kind permission from Butterworth-Heinemann journals, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK)...
Synonyms Acrylonitrile-butadiene copolymer, carboxyl-terminated Butadiene-acrylonitrile copolymer carboxylated Butadiene-acrylonitrile copolymer, carboxyl-terminated Carboxylated butadiene-acrylonitrile copolymer CTBN... [Pg.1003]

CTBN. See Butadiene-acrylonitrile elastomer, carboxyl-terminated... [Pg.1056]

The rubber-toughening process has been one of the most successful methods for modifying polymer toughness. The incorporation of small amounts of rubber into polymer matrices has resulted in significantly improved fracture resistance (1). Particularly interesting improvements in the toughness of epoxies have been accomplished by the addition of carboxyl-terminated butadiene/acrylonitrile (CTBN) elastomers (2,3). [Pg.468]

The most conunonly used materials are the Hycar range from Noveon, which are butadiene, or more usually, acrylonitrile-butadieue telomers which are epoxy- (uo prereaction needed), amino-, vinyl- or, as here carboxyl-terminated. These latter are the well-known CTBN rubbers , which have a molecular weight generally in the region of 3000 to 4000. [Pg.561]


See other pages where Carboxyl terminated butadiene acrylonitrile CTBN is mentioned: [Pg.106]    [Pg.2746]    [Pg.33]    [Pg.419]    [Pg.286]    [Pg.330]    [Pg.374]    [Pg.135]    [Pg.147]    [Pg.329]    [Pg.161]    [Pg.623]    [Pg.92]    [Pg.56]    [Pg.71]    [Pg.121]    [Pg.41]    [Pg.400]    [Pg.655]    [Pg.656]    [Pg.531]   
See also in sourсe #XX -- [ Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.147 , Pg.221 , Pg.240 ]




SEARCH



Acrylonitrile-butadiene-carboxyl

Butadiene-acrylonitrile

CTBN

CTBN (carboxyl-terminated butadiene

CTBN (liquid carboxyl terminated butadiene-acrylonitrile

CTBNs

Carboxyl terminal

Carboxyl terminated butadiene

Carboxyl termination

Carboxyl-terminated butadiene acrylonitrile

Carboxyl-terminated butadiene acrylonitrile CTBN) copolymer

Carboxyl-terminated butadiene-acrylonitrile elastomers CTBN)

Carboxylate butadiene-acrylonitrile

Carboxylated butadiene/acrylonitrile

© 2024 chempedia.info