Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystallization thermodynamic equilibria

At the beginning of the century, nobody knew that a small proportion of atoms in a crystal are routinely missing, even less that this was not a mailer of accident but of thermodynamic equilibrium. The recognition in the 1920s that such vacancies had to exist in equilibrium was due to a school of statistical thermodynamicians such as the Russian Frenkel and the Germans Jost, Wagner and Schollky. That, moreover, as we know now, is only one kind of point defect an atom removed for whatever reason from its lattice site can be inserted into a small gap in the crystal structure, and then it becomes an interstitial . Moreover, in insulating crystals a point defect is apt to be associated with a local excess or deficiency of electrons. [Pg.105]

The shock-compression pulse carries a solid into a state of homogeneous, isotropic compression whose properties can be described in terms of perfect-crystal lattices in thermodynamic equilibrium. Influences of anisotropic stress on solid materials behaviors can be treated as a perturbation to the isotropic equilibrium state. ... [Pg.6]

Nevertheless, as response data have accumulated and the nature of the porous deformation problems has crystallized, it has become apparent that the study of such solids has forced overt attention to issues such as lack of thermodynamic equilibrium, heterogeneous deformation, anisotrophic deformation, and inhomogeneous composition—all processes that are present in micromechanical effects in solid density samples but are submerged due to continuum approaches to mechanical deformation models. [Pg.50]

Therefore, we first look at the question of how a crystal looks in thermodynamical equilibrium. Macroscopically, this is controlled by its anisotropic surface (free) energy and the shape can be calculated via the Wullf construction. [Pg.856]

When studying heterogeneous equilibria involving clathrates, one is faced with peculiar difficulties owing to the hysteresis effects mentioned in the introduction the solute in a clathrate crystal of hydroquinone, for instance, will not come to thermodynamic equilibrium with the vapor in which it is placed. Consequently it is impossible, or at least very difficult, to measure the equilibrium vapor pressure of the solute in a clathrate by placing some crystals in a tensometer (cf. the experiments of Wynne-Jones and Anderson,58 and those of Leech and Richards reported by Powell33). [Pg.35]

Point defects are always present in every material in thermodynamic equilibrium. Considering the formation of n vacancies, the increase in configuration entropy is determined by the number of different possible ways of taking n atoms out of the crystal comprising N atoms in total. This number, c1, is given by... [Pg.528]

The formation of the combination of defects may be described as a chemical reaction and thermodynamic equilibrium conditions may be applied. The chemical notations of Kroger-Vink, Schottky, and defect structure elements (DSEs) are used [3, 11]. The chemical reactions have to balance the chemical species, lattice sites, and charges. An unoccupied lattice site is considered to be a chemical species (V) it is quite common that specific crystal structures are only found in the presence of a certain number of vacancies [12]. The Kroger-Vink notation makes use of the chemical element followed by the lattice site of this element as subscript and the charge relative to the ideal undisturbed lattice as superscript. An example is the formation of interstitial metal M ions and metal M ion vacancies, e.g., in silver halides ... [Pg.529]

As compared to ECC produced under equilibrium conditions, ECC formed af a considerable supercooling are at thermodynamic equilibrium only from the standpoint of thermokinetics60). Indeed, under chosen conditions (fi and crystallization temperatures), these crystals exhibit some equilibrium degree of crystallinity at which a minimum free energy of the system is attained compared to all other possible states. In this sense, the system is in a state of thermodynamic equilibrium and is stable, i.e. it will maintain this state for any period of time after the field is removed. However, with respect to crystals with completely extended chains obtained under equilibrium conditions, this system corresponds only to a relative minimum of free energy, i.e. its state is metastable from the standpoint of equilibrium thermodynamics60,61). [Pg.237]

Having briefly discussed the way in which the important features of a single crystal are incorporated into a simple model we next consider what information can be obtained on this single crystal from equilibrium thermodynamics. [Pg.228]

In this work, we developed the safeguard active-set method by modifying the active-set method for thermodynamic equilibrium in order to include the classical nucleation theory. At tn, assume that the partition ( (r ), M(t ), N(t ) and the crystallization time tciyst(t ) forM(t ) are known. For a new feed vector and RH at Vu compute W(tn+i), M(t i), N(t + )) and tciyst(t +i) as follows ... [Pg.682]

Lattice Vacancies and Interstitials Defects such as lattice vacancies and interstitials fall into two main categories intrinsic defects, which are present in pure crystal at thermodynamic equilibrium, and extrinsic defects, which are created when a foreign atom is inserted into the lattice. [Pg.419]

Snow crystals [4] Their macroscopic structure is different from a bulk three-dimensional ice crystal, but they are formed by homologous pair-pair interaction between water molecules and are static and in thermodynamic equilibrium. It should be noted, however, that dendritic crystal growth is a common phenomenon for metals [5-7] and polymers. The crystals grow under non-equilibrium conditions, but the final crystal is static. [Pg.188]

The effect of the medium (solvent) on the dissolved substance can best be expressed thermodynamically. Consider a solution of a given substance (subscript i) in solvent s and in another solvent r taken as a reference. Water (w) is usually used as a reference solvent. The two solutions are brought to equilibrium (saturated solutions are in equilibrium when each is in equilibrium with the same solid phase—the crystals of the dissolved substance solutions in completely immiscible solvents are simply brought into contact and distribution equilibrium is established). The thermodynamic equilibrium condition is expressed in terms of equality of the chemical potentials of the dissolved substance in both solutions, jU,(w) = jU/(j), whence... [Pg.73]

At all temperatures above 0°K Schottky, Frenkel, and antisite point defects are present in thermodynamic equilibrium, and it will not be possible to remove them by annealing or other thermal treatments. Unfortunately, it is not possible to predict, from knowledge of crystal structure alone, which defect type will be present in any crystal. However, it is possible to say that rather close-packed compounds, such as those with the NaCl structure, tend to contain Schottky defects. The important exceptions are the silver halides. More open structures, on the other hand, will be more receptive to the presence of Frenkel defects. Semiconductor crystals are more amenable to antisite defects. [Pg.65]

An intrinsic defect is one that is in thermodynamic equilibrium in the crystal. This means that a population of these defects cannot be removed by any forms of physical or chemical processing. Schottky, Frenkel, and antisite defects are the best characterized intrinsic defects. A totally defect-free crystal, if warmed to a temperature that allows a certain degree of atom movement, will adjust to allow for the generation of intrinsic defects. The type of intrinsic defects that form will depend upon the relative formation energies of all of the possibilities. The defect with the lowest formation energy will be present in the greatest numbers. This can change with temperature. [Pg.77]

In a perfect crystal at 0 K all atoms are ordered in a regular uniform way and the translational symmetry is therefore perfect. The entropy is thus zero. In order to become perfectly crystalline at absolute zero, the system in question must be able to explore its entire phase space the system must be in internal thermodynamic equilibrium. Thus the third law of thermodynamics does not apply to substances that are not in internal thermodynamic equilibrium, such as glasses and glassy crystals. Such non-ergodic states do have a finite entropy at the absolute zero, called zero-point entropy or residual entropy at 0 K. [Pg.17]

The two main assumptions underlying the derivation of Eq. (5) are (1) thermodynamic equilibrium and (2) conditions of constant temperature and pressure. These assumptions, especially assumption number 1, however, are often violated in food systems. Most foods are nonequilibrium systems. The complex nature of food systems (i.e., multicomponent and multiphase) lends itself readily to conditions of nonequilibrium. Many food systems, such as baked products, are not in equilibrium because they experience various physical, chemical, and microbiological changes over time. Other food products, such as butter (a water-in-oil emulsion) and mayonnaise (an oil-in-water emulsion), are produced as nonequilibrium systems, stabilized by the use of emulsifying agents. Some food products violate the assumption of equilibrium because they exhibit hysteresis (the final c/w value is dependent on the path taken, e.g., desorption or adsorption) or delayed crystallization (i.e., lactose crystallization in ice cream and powdered milk). In the case of hysteresis, the final c/w value should be independent of the path taken and should only be dependent on temperature, pressure, and composition (i.e.,... [Pg.24]


See other pages where Crystallization thermodynamic equilibria is mentioned: [Pg.236]    [Pg.5]    [Pg.29]    [Pg.859]    [Pg.642]    [Pg.244]    [Pg.249]    [Pg.219]    [Pg.169]    [Pg.140]    [Pg.167]    [Pg.239]    [Pg.276]    [Pg.604]    [Pg.78]    [Pg.283]    [Pg.350]    [Pg.4]    [Pg.84]    [Pg.287]    [Pg.194]    [Pg.240]    [Pg.285]    [Pg.122]    [Pg.126]    [Pg.79]    [Pg.239]    [Pg.187]    [Pg.187]    [Pg.221]    [Pg.277]    [Pg.194]    [Pg.277]    [Pg.380]   
See also in sourсe #XX -- [ Pg.1663 , Pg.1665 ]




SEARCH



Crystal equilibrium

Crystal thermodynamics

Crystallization thermodynamics

Equilibrium crystallization

Equilibrium thermodynamics

Non-equilibrium Thermodynamics of Polymer Crystallization

The Mesoscopic Non-Equilibrium Thermodynamics Approach to Polymer Crystallization

Thermodynamic equilibrium melting temperature of polymer crystals

Thermodynamics Equilibrium/equilibria

© 2024 chempedia.info