Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metallic solids crystalline

The heptahydrate, ZnS04 7H20, is a colorless crystalline solid metallic taste rhombohedral crystals effloresces refractive index 1.457 density 1.957 g/cm3 at 25°C melts at 100°C loses all its water molecules at 280°C decomposes above 500°C very soluble in water, 96.5 g/lOOmL at 20°C soluble in glycerol, 40 g/100 mL insoluble in alcohol. [Pg.992]

Metal-insulator transitions in both crystalline and non-crystalline materials are often associated with the existence of magnetic moments. Moments on atoms in a solid are of course an effect of correlation, that is of interaction between electrons, and their full discussion is deferred until Chapter 3. But even within the approximation of non-interacting electrons in crystalline solids, metal-insulator transitions can occur. These will now be discussed. [Pg.20]

J.K. Lee, D.M. Barnett, and H.I. Aaronson. The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids. Metall. Trans. A, 8(6) 963-970, 1977. [Pg.484]

For tire purjDoses of tliis review, a nanocrystal is defined as a crystalline solid, witli feature sizes less tlian 50 nm, recovered as a purified powder from a chemical syntliesis and subsequently dissolved as isolated particles in an appropriate solvent. In many ways, tliis definition shares many features witli tliat of colloids , defined broadly as a particle tliat has some linear dimension between 1 and 1000 nm [1] tire study of nanocrystals may be drought of as a new kind of colloid science [2]. Much of die early work on colloidal metal and semiconductor particles stemmed from die photophysics and applications to electrochemistry. (See, for example, die excellent review by Henglein [3].) However, the definition of a colloid does not include any specification of die internal stmcture of die particle. Therein lies die cmcial distinction in nanocrystals, die interior crystalline stmcture is of overwhelming importance. Nanocrystals must tmly be little solids (figure C2.17.1), widi internal stmctures equivalent (or nearly equivalent) to drat of bulk materials. This is a necessary condition if size-dependent studies of nanometre-sized objects are to offer any insight into die behaviour of bulk solids. [Pg.2899]

The first step in designing a precursor synthesis is to pick precursor molecules that, when combined in organic solvents, yield the bulk crystalline solid. For metals, a usual approach is to react metal salts with reducing agents to produce bulk metals. The main challenge is to find appropriate metal salts that are soluble in an organic phase. [Pg.2901]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Sulphonic acids are frequently crystalline solids, readily soluble in water and often hygroscopic. Because of the difficulty of isolation of the free acids, they are usually encountered as the alkah metal salts. [Pg.552]

Titanium trifluoride [13470-08-17, TiF, is a blue crystalline solid that undergoes oxidation to Ti02 upon heating in air at 100°C (see Titanium compounds). In the absence of air, disproportionation occurs above 950°C to give TiF and titanium metal. TiF decomposes at 1200°C, has a density of 2.98 g/cm, and is insoluble in water but soluble in acids and alkafles. The magnetic moment is 16.2 x 10 J/T (1.75 -lB). [Pg.255]

The alkali metal halides are all high-melting, colourless crystalline solids which can be conveniently prepared by reaction of the appropriate hydroxide (MOH) or carbonate (M2CO3) with aqueous hydrohalic acid (HX), followed by recryslallization. Vast quantities of NaCl and KCl are available in nature and can be purihed if necessary by simple crystallization. The hydrides have already been discussed (p. 65). [Pg.82]

Salts are obtained by direct neutralization of the acid with appropriate oxides, hydroxides, or carbonates. Sulfamic acid is a diy, non-volatile, non-hygroscopic, colourless, white, crystalline solid of considerable stability. It melts at 205°, begins to decompose at 210°, and at 260° rapidly gives a mixture of SO2, SO3, N2, H2O, etc. It is a strong acid (dissociation constant 1.01 x 10 at 25° solubility 25gper 100g H2O) and, because of its physical form and stability, is a convenient standard for acidimetry. Over 50000 tonnes are manufactured annually and its principal applications are in formulations for metal cleaners, scale removers, detergents and stabilizers for chlorine in aqueous solution. [Pg.742]

To an ethanolic solution of sodium ethoxide prepared by addition of 0.46 g (0.02 mole) of freshly cut sodium metal in 100 mL of absolute ethanol was slowly added 5.10 g (0.02 mole) of ethyl 4-nitrobenzylthioacetate 28 with stirring at 5°C. The mixture was refluxed for about 4 to 6 hours until the reaction was complete (monitored by tic). The resultant mixture was allowed to cool to room temperature and then added into an ice-water mixture. The solution was neutralized with slow addition of dilute aqueous hydrochloric acid (10%). The precipitated solid was removed by filtration, washed with water, and recrystallized from a dimethylformamide-ethanol (T.l) mixture yielding 2.10 g (76 %) of 29 as a light brown crystalline solid, mp 227°C ir (nujol) (neat (1710 cm ms m/z Til (NT). Anal. Calcd. For C13H11NO4S C, 56.31 H, 3.97 N, 5.05 S, 11.55. Found C, 56.36 H, 3.95 N, 5.01 S, 11.49. [Pg.205]

A representative sample of the product so prepared showed, upon analysis, 13.26% sodium against a theoretical of 13.70% for the disodium salt. The dialkali salt has a pH of about 5.3 and behaves like a weak acid, displacing CO from carbonates and reacting with metals to form hydrogen. It is a white crystalline solid. [Pg.554]

The compounds formed by the reaction of hydrogen with the alkali and alkaline earth metals contain H- ions for example, sodium hydride consists of Na+ and H- ions. These white crystalline solids are often referred to as saline hydrides because of their physical resemblance to NaCL Chemically, they behave quite differently from sodium chloride for example, they react with water to produce hydrogen gas. Typical reactions are... [Pg.542]

Crystalline solid Yellow color, no metallic luster... [Pg.317]

A.K. Ardell, Mechanisms of Phase Transformations in Crystalline Solids, Inst. Metals, Monograph and Report Series, No. 33, 1969, p. 111. [Pg.289]

Pure sodium hydroxide is a white crystalline solid. It dissolves in water with high evolution of heat and is a very strong base. It reacts with certain metals such as aluminum and zinc to produce hydrogen. Extremely hazardous chemical. [Pg.28]

To demonstrate the utilities of salt inclusion, we review the selected zeoUte-like transition-metal-containing open frameworks (TMCOFs) and then describe the structures of non-centrosymmetric solids (NCSs) and, finally, report crystalline solids containing a periodic array of transition metal nanostructures. In particular, we will address the issues concerning the role that molten salt has in... [Pg.240]

The first column of the periodic table, Group 1, contains elements that are soft, shiny solids. These alkali metals include lithium, sodium, potassium, mbidium, and cesium. At the other end of the table, fluorine, chlorine, bromine, iodine, and astatine appear in the next-to-last column. These are the halogens, or Group 17 elements. These four elements exist as diatomic molecules, so their formulas have the form X2 A sample of chlorine appears in Figure EV. Each alkali metal combines with any of the halogens in a 1 1 ratio to form a white crystalline solid. The general formula of these compounds s, AX, where A represents the alkali metal and X represents the halogen A X = N a C 1, LiBr, CsBr, KI, etc.). [Pg.18]

One way that a solid metal can accommodate another is by substitution. For example, sterling silver is a solid solution containing 92.5% silver and 7.5% copper. Copper and silver occupy the same column of the periodic table, so they share many properties, but copper atoms (radius of 128 pm) are smaller than silver atoms (radius of 144 pm). Consequently, copper atoms can readily replace silver atoms in the solid crystalline state, as shown schematically in Figure 12-4. [Pg.842]

Color changes often provide evidence for the interaction of ligands and metal cations, particularly for the transition metals. The Ni + cation provides an example. Figure 20-5 shows that nickel(It) sulfate, a white crystalline solid, dissolves in water to give a green solution. The green color cannot be due to Ni or S04 , which the white solid shows to be colorless. Rather, the color comes from the octahedral complex that forms when each nickel ion binds to six water molecules NiS04(. ) -I- 6H2 0(/) [Ni (H2 0)g] (ag) + SOY (gg)... [Pg.1435]

Concentrated solutions of orthophosphoric acid, often containing metal salts, are used to form cements with metal oxides and aluminosilicate glasses. Orthophosphoric acid, often referred to simply as phosphoric acid, is a white crystalline solid (m.p. 42-35 °C) and there is a crystalline hemihydrate, 2H3PO4.H2O, which melts at 29-35 °C. The acid is tribasic and in aqueous solution has three ionization constants (pA J 2-15,7-1 and 12-4. [Pg.197]


See other pages where Metallic solids crystalline is mentioned: [Pg.78]    [Pg.78]    [Pg.5]    [Pg.384]    [Pg.78]    [Pg.78]    [Pg.5]    [Pg.384]    [Pg.27]    [Pg.190]    [Pg.376]    [Pg.389]    [Pg.2898]    [Pg.2901]    [Pg.313]    [Pg.55]    [Pg.479]    [Pg.292]    [Pg.503]    [Pg.103]    [Pg.233]    [Pg.239]    [Pg.776]    [Pg.965]    [Pg.1222]    [Pg.144]    [Pg.36]    [Pg.239]    [Pg.242]    [Pg.13]    [Pg.308]   
See also in sourсe #XX -- [ Pg.349 , Pg.350 , Pg.351 ]

See also in sourсe #XX -- [ Pg.379 , Pg.381 , Pg.381 ]

See also in sourсe #XX -- [ Pg.456 ]




SEARCH



Metal crystalline

Metal crystallinity

Metallic solids

© 2024 chempedia.info