Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal clouds

Sassen, K., and K. N. Liou, 1979. Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds Part I. Angular scattering patterns, J. Atmos. Sci., 36, 838-852. [Pg.515]

Condensation is the main route leading to the formation of finely dispersed aerosols in nature and industry. The formation of cumulus (composed of water droplets) and cirrus (composed of ice crystals) clouds mainly starts with heterogeneous nucleation on fine dusts and microcrystals of salt. These microcrystals form when splashes of sea water are dried and raised to high layers of atmosphere by convection air streams. [Pg.589]

This is defined as the temperature at which a haze appears in a sample which is attributed to the formation of wax crystals. Cloud point data is used to determine the tendency of small orifices to plug in cold operating temperatures, normally measured on middle distillate cuts. This property can... [Pg.107]

The cloud point, usually between 0 and -10°C, is determined visually (as in NF T 07-105). It is equal to the temperature at which paraffin crystals normally dissolved in the solution of all other components, begin to separate and affect the product clarity. The cloud point can be determined more accurately by differential calorimetry since crystal formation is an exothermic phenomenon, but as of 1993 the methods had not been standardized. [Pg.214]

At lower temperatures, the crystals increase in size, and form networks that trap the liquid and hinder its ability to flow. The pour point is attained which can, depending on the diesel fuel, vary between -15 and -30°C. This characteristic (NF T 60-105) is determined, like the cloud point, with a very rudimentary device (maintaining a test tube in the horizontal position without apparent movement of the diesel fuel inside). [Pg.215]

One remaining possibility that is less costly from an energy point of view but needs to be carefully controlled is to incorporate additives called flow improvers. These materials favor the dispersion of the paraffin crystals and in doing so prevent them from forming the large networks which cause the filter plugging. The conventional flow improvers essentially change the CFPP and pour point, but not the cloud point. They are usually copolymers, produced, for example, from ethylene and vinyl acetate monomers ... [Pg.216]

The nature of these paraffins and their concentration in diesel fuel affect the three temperatures that characterize the cold behavior. The cloud point is the temperature at which crystals of paraffins appear when the temperature is lowered. The cold filter pluming point is defined as the temperature under which a suspension no ionger flows through a standard filter. Finally, the pour point is the temperature below which the diesel fuel no longer flows by simple gravity in a standard tube. These three temperatures are defined by regulations and the refiner has three types of additives to improve the quality of the diesel fuel of winter. [Pg.353]

Unlike melting and the solid-solid phase transitions discussed in the next section, these phase changes are not reversible processes they occur because the crystal stmcture of the nanocrystal is metastable. For example, titania made in the nanophase always adopts the anatase stmcture. At higher temperatures the material spontaneously transfonns to the mtile bulk stable phase [211, 212 and 213]. The role of grain size in these metastable-stable transitions is not well established the issue is complicated by the fact that the transition is accompanied by grain growth which clouds the inteiyDretation of size-dependent data [214, 215 and 216]. In situ TEM studies, however, indicate that the surface chemistry of the nanocrystals play a cmcial role in the transition temperatures [217, 218]. [Pg.2913]

Wkiterization is a specialized appHcation of fractional crystallization that is utilized to remove saturates or waxes from Hquid oils. Salad oils, which do not cloud at refrigerator temperature, have been produced by winterizing lightly hydrogenated soybean ok. However, many producers now use refined, bleached, deodorized oks for this purpose (24). [Pg.127]

Mercuric Nitrate. Mercuric nitrate [10045-94-0] Hg(N02)2, is a colorless dehquescent crystalline compound prepared by the exothermic dissolution of mercury in hot, concentrated nitric acid. The reaction is complete when a cloud of mercurous chloride is not formed when the solution is treated with sodium chloride solution. The product crystallizes upon cooling. Mercuric nitrate is used in organic synthesis as the starting material and for the formulation of a great many other mercuric products. [Pg.113]

A melamine laminating resin used to saturate the print and overlay papers of a typical decorative laminate might contain two moles of formaldehyde for each mole of melamine. In order to inhibit crystallization of methylo1 melamines, the reaction is continued until about one-fourth of the reaction product has been converted to low molecular weight polymer. A simple deterrnination of free formaldehyde may be used to foUow the first stage of the reaction, and the build-up of polymer in the reaction mixture may be followed by cloud-point dilution or viscosity tests. [Pg.326]

Cloud Seeding. In 1947, it was demonstrated that silver iodide could initiate ice crystal formation because, in the [ -crystalline form, it is isomorphic with ice crystals. As a result, cloud seeding with silver iodide has been used in weather modifications attempts such as increases and decreases in precipitation (rain or snow) and the dissipation of fog. Optimum conditions for cloud seeding are present when precipitation is possible but the nuclei for the crystalliza tion of water are lacking. [Pg.92]

Fig. 9.2. The excellent crystallographic matching between silver iodide and ice makes silver iodide a very potent nucleating agent for ice crystals. When clouds at sub-zero temperatures are seeded with Agl dust, spectacular rainfall occurs. Fig. 9.2. The excellent crystallographic matching between silver iodide and ice makes silver iodide a very potent nucleating agent for ice crystals. When clouds at sub-zero temperatures are seeded with Agl dust, spectacular rainfall occurs.
Another relatively recent technique, in its own way as strange as Mossbauer spectrometry, is positron annihilation spectrometry. Positrons are positive electrons (antimatter), spectacularly predicted by the theoretical physicist Dirac in the 1920s and discovered in cloud chambers some years later. Some currently available radioisotopes emit positrons, so these particles arc now routine tools. High-energy positrons are injected into a crystal and very quickly become thermalised by... [Pg.238]

Clouds cover roughly two-thirds of our earth s surface and play an important role in influencing global climate by affecting the radiation budget. Cirrus clouds are one example of a cloud type whose optical properties are not accurately known. Cirrus clouds form in the upper troposphere and are composed almost exclusively of non-spherical ice crystal particles. The impact of cloud coverage on dispersion of pollution in the atmosphere is an area of great concern and intensive study. [Pg.11]

Carbon dioxide gas diluted with nitrogen is passed continuously across the surface of an agitated aqueous lime solution. Clouds of crystals first appear just beneath the gas-liquid interface, although soon disperse into the bulk liquid phase. This indicates that crystallization occurs predominantly at the gas-liquid interface due to the localized high supersaturation produced by the mass transfer limited chemical reaction. The transient mean size of crystals obtained as a function of agitation rate is shown in Figure 8.16. [Pg.239]

Water is constantly evaporated from rivers, lakes, and oceans, and released from vegetation through evapo-transpiration. Water vapor travels through the atmosphere, eventually forming small droplets or ice crystals in clouds. Some particles grow sufficiently... [Pg.86]

This condition is of concern only when equipment operates in subzero ambient temperatures. Since diesel fuel extracted from crude oil contains a quantity of paraffin wax, at some low ambient temperatures this paraffin will precipitate and create wax crystals in the fuel. This can result in plugging of the fuel filters, resulting in a hard or no-start condition. Any moisture in the fuel can also form ice ciystals. Cloud point temperatures for various grades of diesel and other fuels should be at least 12°C (21.6°F) below the ambient temperature. In cases where cloud point becomes a problem, a fuel water separator and a heater are employed. [Pg.340]

We may recall that in the NaCl crystal structure each positive ion is surrounded by six negative ions, while each negative ion is surrounded by six positives as a result the crystal can be broken up into its component ions only if work is done equal to the crystal energy. In a dilute solution wc find a tendency toward a somewhat similar situation each positive ion is surrounded by a cloud of negative charge, while at the same time each negative ion is surrounded by a cloud of positive charge ... [Pg.253]

The acid, without drying, is suspended in about 200 cc. of distilled water and with vigorous stirring, cautiously (Note 3) treated with 25 per cent sodium hydroxide solution until dissolved and the solution reacts neutral to litmus. The solution is then filtered through folded filter paper which should be free from soluble calcium salts, otherwise the filtrate will remain clouded by a suspension of the calcium salt. The clear, faintly yellow or colorless filtrate is then vigorously stirred and treated with 1.5 volumes of 95 per cent alcohol. Crystallization is induced by rubbing with a rod and then an additional volume of alcohol is added. The mixture should be allowed to cool to about 200 and stand for at least two hours to complete the precipitation of the salt, which is then filtered by suction and washed thoroughly with 85 per cent alcohol. The salt is then air-dried. The yield is 73-77 g. (38-40 per cent of the theoretical amount). [Pg.101]


See other pages where Crystal clouds is mentioned: [Pg.511]    [Pg.198]    [Pg.1252]    [Pg.323]    [Pg.511]    [Pg.198]    [Pg.1252]    [Pg.323]    [Pg.328]    [Pg.212]    [Pg.29]    [Pg.192]    [Pg.193]    [Pg.92]    [Pg.190]    [Pg.302]    [Pg.486]    [Pg.423]    [Pg.481]    [Pg.481]    [Pg.91]    [Pg.103]    [Pg.429]    [Pg.65]    [Pg.93]    [Pg.724]    [Pg.159]    [Pg.256]    [Pg.503]    [Pg.1185]    [Pg.253]    [Pg.528]    [Pg.950]    [Pg.107]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Clouding liquid crystals

© 2024 chempedia.info