Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crosslinking thermal stability

Keywords Diethynylbenzene-silylene / Carborane / Hybrid / Crosslinking / Thermal Stability... [Pg.620]

Film stability is a primary concern for applications. LB films of photopoly-merizable polymeric amphiphiles can be made to crosslink under UV radiation to greatly enhance their thermal stability while retaining the ordered layered structure [178]. Low-molecular-weight perfluoropolyethers are important industrial lubricants for computer disk heads. These small polymers attached to a polar head form continuous films of uniform thickness on LB deposi-... [Pg.560]

A series of phosphorus- and bromine-containing FRs were synthesized and studied to understand their role, especially their combined effects. Thus, monocar-danyl phosphoric acid, its bromo derivatives and their formaldehyde condensates and crosslinked products [28,188] were prepared and their properties compared with analogous products made from phenol [28,189]. Table 14 gives the LOI values, char yields (Cy at 600°C), and thermal stability at 50% (T6o) decomposition. [Pg.429]

The results of studying the properties of crosslinked modified PAN fibres showed44 that crosslinking results in a slight increase of their thermal stability and heat resistance. [Pg.113]

Trimerization to isocyanurates (Scheme 4.14) is commonly used as a method for modifying the physical properties of both raw materials and polymeric products. For example, trimerization of aliphatic isocyanates is used to increase monomer functionality and reduce volatility (Section 4.2.2). This is especially important in raw materials for coatings applications where higher functionality is needed for crosslinking and decreased volatility is essential to reduce VOCs. Another application is rigid isocyanurate foams for insulation and structural support (Section 4.1.1) where trimerization is utilized to increase thermal stability and reduce combustibility and smoke formation. Effective trimer catalysts include potassium salts of carboxylic acids and quaternary ammonium salts for aliphatic isocyanates and Mannich bases for aromatic isocyanates. [Pg.226]

A fluid loss additive for hard brine environments has been developed [1685], which consists of hydrocarbon, an anionic surfactant, an alcohol, a sulfonated asphalt, a biopolymer, and optionally an organophilic clay, a copolymer of N-vinyl-2-pyrrolidone and sodium-2-acrylamido-2-methylpropane sulfonate. Methylene-bis-acrylamide can be used as a crosslinker [1398]. Crosslinking imparts thermal stability and resistance to alkaline hydrolysis. [Pg.49]

Since the utility of these materials is improved by the incorporation of these reactive functionalities without severely decreasing other favorable properties such as thermooxidative stability and solvent resistance the chemistry of the isoimide isomerization and acetylene crosslinking reactions is of considerable interest. Previous work in our laboratory has shown that these materials, when loaded with metal powders, provide a convenient and effective method of optimizing the electrical conductance and thermal stability of aluminum conductor joints. [Pg.460]

Third, the introduction of crosslinks between chains confers insolubility and increased solid state rigidity, often accompanied by improved thermal stability. High degrees of crosslinking confer ceramic-type properties on the solid, whether the backbone atoms are carbon atoms or inorganic species. [Pg.252]

Thermosets differ molecularly from thermoplastics in that their individual chains are anchored to one another through crosslinks. The resulting network creates cohesive materials that demonstrate better thermal stability, rigidity, and dimensional stability than thermoplastics. Some examples of traditional thermosets are melamine-formaldehyde resins, which are used to treat fabrics to make them wrinkle-free, and Bakelite (a phenol-formaldehyde resin), a historically important polymer used in many applications, such as costume jewelry, electrical switches, and radio casings. [Pg.59]

In order for maleimide/vinyl ether photoinitiator free photopolymerization to be useful, it is important that the cured films have good thermal/UV stability. Since there are no small molecule photoinitiators added to the uncured mixture initially, there is no residual small molecule photo initiator present in the final crosslinked film. This accounts for the enhanced UV stability we have observed for cured maleimide/vinyl ether films. In addition, TGA thermograms of photocured films of the MPBM/CHVE mixture (Figure 8) exhibit excellent thermal stability, with decomposition occurring at higher temperatures than for a simple UV cured HDDA film with 3 weight percent DMAP photoinitiator. (Such thermal stability would be... [Pg.145]

A sample of the polymer to be studied and an inert reference material are heated and cooled in an inert environment (nitrogen) according to a defined schedule of temperatures (scanning or isothermal). The heat-flow measurements allow the determination of the temperature profile of the polymer, including melting, crystallization and glass transition temperatures, heat (enthalpy) of fusion and crystallization. DSC can also evaluate thermal stability, heat capacity, specific heat, crosslinking and reaction kinetics. [Pg.170]


See other pages where Crosslinking thermal stability is mentioned: [Pg.765]    [Pg.820]    [Pg.469]    [Pg.389]    [Pg.26]    [Pg.111]    [Pg.38]    [Pg.60]    [Pg.269]    [Pg.424]    [Pg.455]    [Pg.234]    [Pg.82]    [Pg.82]    [Pg.601]    [Pg.205]    [Pg.337]    [Pg.264]    [Pg.27]    [Pg.90]    [Pg.130]    [Pg.150]    [Pg.148]    [Pg.150]    [Pg.527]    [Pg.214]    [Pg.5]    [Pg.458]    [Pg.64]    [Pg.78]    [Pg.81]    [Pg.87]    [Pg.190]    [Pg.217]    [Pg.218]    [Pg.235]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Crosslinking and thermal stability

Highly Crosslinked and Thermally Stabilized UHMWPE

Highly crosslinked/thermally stabilized

Highly crosslinked/thermally stabilized UHMWPE

© 2024 chempedia.info