Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trifunctional Crosslinkers

Polyfunctional OH Components (Crosslinkers). For crosslinking, trifunctional alcohols are used mainly. Some are of the same type as the difunctional prepolymers—e.g., polyethers derived from trifunctional initiators (glycerol, trimethylolpropane, 1,2,6-hexanetriol) and propylene or butylene oxide—and are preferred. Low molecular weight alcohols are used also. Examples are the ones listed above and glycerol monoricinole-ate, glycerol triricinoleate and amino alcohols like triethanolamine. [Pg.97]

Precrosslinked poly(organosiloxane) particles are composed of crosslinking trifunctional and linear difunctional siloxane units (T and D units, respectively) [5]. The molar ratios of D and T units can be varied without restrictions thus, hard spheres (fillers) as well as soft, elastic silicone particles are accessible. In this study, the siloxane particles were synthesized in emulsion. The particle size was controlled by emulsifier concentration and crosslink density highly crosslinked particles were obtained with particle diameters ranging from 20-50 nm the size of elastic particles could be varied between 70 and 150 nm. The composition of precrosslinked poly(organosiloxane) particles is summarized in Scheme 1 further, organic radicals R which can be incorporated into the partieles are listed [6,7]. [Pg.674]

There is reason to believe that the molecular structure of crosslinked trifunctional silanes/siloxanes may also influence the durability of the resulting silicone resin network [14, 40 - 42]. Allowance must be made here for the fact that such considerations are models in nature and also that we still do not have adequate knowledge of the molecular principles of fully condensed silicone resin networks [15]. [Pg.828]

In the case of (Ala-Gly-Pro)n with n = 5-15, the tripeptide chains were synthesized by the liquid-solid phase technique. As mentioned above, the coupling of longer preformed peptide chains was difficult and the yield of the trimer was low. Therefore, a liquid-solid phase technique was applied in which a trimer was grown in a stepwise manner, beginning from a trifunctional crosslinked base A. [Pg.176]

Polyurethanes are thermoset polymers formed from di-isocyanates and poly functional compounds containing numerous hydroxy-groups. Typically the starting materials are themselves polymeric, but comprise relatively few monomer units in the molecule. Low relative molar mass species of this kind are known generally as oligomers. Typical oligomers for the preparation of polyurethanes are polyesters and poly ethers. These are usually prepared to include a small proportion of monomeric trifunctional hydroxy compounds, such as trimethylolpropane, in the backbone, so that they contain pendant hydroxyls which act as the sites of crosslinking. A number of different diisocyanates are used commercially typical examples are shown in Table 1.2. [Pg.16]

As explained earfier step polymerisations generally occur by condensation reactions between functionally substituted monomers. In order to obtain high molar mass products bifuncfional reactants are used monofunctional compounds are used to control the reaction while trifunctional species may be included in order to give branched or crosslinked polymers. A number of types of reaction may be involved, as described briefly in the following paragraphs. [Pg.35]

Initiation of stannous octoate-catalyzed copolymerization of e-caprolactone with glycerol was used to prepare a series of trifunctional hydroxy-end blocked oligomers, which were then treated with hexane-1,6-diisocyanate to form elastomeric polyesterurethanes with different crosslink densities (49). Initiation of e-caprolactone polymerization with a hydroxypropyl-terminated polydimethylsiloxane in the presence of dibutyl tin dilaurate has been used to prepare a polyester-siloxane block copolymer (Fig. 4) (50). [Pg.80]

Step growth polymerization can also yield highly crosslinked polymer systems via a prepolymer process. In this process, we create a prepolymer through a step growth reaction mechanism on two of the sites of a trifunctional monomer. The third site, which is chemically different, can then react with another monomer that is added to the liquid prepolymer to create the crosslinked species. We often use heat to initiate the second reaction. We can use this method to directly create finished items by injecting a mixture of the liquid prepolymer and additional monomer into a mold where they polymerize to create the desired, final shape. Cultured marble countertops and some automotive body panels are created in this manner. [Pg.60]

Crosslinking of polyurethanes proceeds in different ways depending on the stoichiometry and choice of reactants and reaction conditions. For example, an isocyanate-terminated trifunctional prepolymer is prepared by reaction of a polyol and... [Pg.28]

The first SANS experiments on end-linked elastomers with a well-defined functionality were carried out by Hinkley et al, (22). Hydroxy-terminated polybutadiene was crosslinked by a trifunctional isocyanate, and the resultant polymer was uniaxially stretched. [Pg.273]

C. C. Han, H. Yu and their colleagues (23) have presented some new SANS data on end-linked trifunctional isoprene networks. These are shown in Figure 10. Those materials of low molecular weight between crosslinks exhibit greater chain deformation consistent with the thesis that the junction points are fixed. This is the reverse of that found by Beltzung et al. for siloxane networks. [Pg.276]

On the other hand, the parts of each crosslinking molecule between two adjacent branch points can be taken as short network chains. In this case the junctions are trifunctional (f = 3) and the chains have a bimodal distribution. The total number of network chains,, is threefold the number of former a,u-divinyl chains, because two short chains and one long chain proceed from each crosslink. Vj is also tabulated in Table II. [Pg.314]

Substituted aziridines have been used to form homobifunctional and trifunctional crosslinking agents, although their use has been limited (Ross, 1953 Alexander, 1954). The functional group has found use, however, in the design of the fluorescent probe dansyl aziridine (5-dimethylaminonaphthalene-2-sulfonyl aziridine) (Johnson et al., 1978 Grossman et al., 1981). [Pg.184]

Figure 6.1 The Wedekind trifunctional crosslinker can react with amine groups via its p-nitrophenyl ester to form amide bond linkages. The phenyl azide group then can be photoactivated with UV light to generate covalent bond formation with a second molecule. The biotin side chain provides binding capability with avidin or streptavidin probes. Figure 6.1 The Wedekind trifunctional crosslinker can react with amine groups via its p-nitrophenyl ester to form amide bond linkages. The phenyl azide group then can be photoactivated with UV light to generate covalent bond formation with a second molecule. The biotin side chain provides binding capability with avidin or streptavidin probes.
Figure 6.2 The trifunctional reagent sulfo-SBED reacts with amine-containing bait proteins via its NHS ester side chain. Subsequent interaction with a protein sample and exposure to UV light can cause crosslink formation with a second interacting protein. The biotin portion provides purification or labeling capability using avidin or streptavidin reagents. The disulfide bond on the NHS ester arm provides cleavability using disulfide reductants, which effectively transfers the biotin label to an unknown interacting protein. Figure 6.2 The trifunctional reagent sulfo-SBED reacts with amine-containing bait proteins via its NHS ester side chain. Subsequent interaction with a protein sample and exposure to UV light can cause crosslink formation with a second interacting protein. The biotin portion provides purification or labeling capability using avidin or streptavidin reagents. The disulfide bond on the NHS ester arm provides cleavability using disulfide reductants, which effectively transfers the biotin label to an unknown interacting protein.
MTS-ATF-biotin and MTS-ATF-LC-biotin are trifunctional crosslinkers similar in design to sulfo-SBED discussed previously, but in addition to the biotin handle, they contain a... [Pg.341]

Hydrophilic short biotin-PEG tags also have found their way into the design of multifunctional crosslinkers to study protein structures by mass spec. Fujii et al. (2004) developed a homobifunctional NHS ester crosslinker that in addition has a PEG-biotin handle (Figure 18.1). The reagent actually is a trifunctional compound similar to the biotinylated PIR compound... [Pg.708]

Figure 18.1 A trifunctional reagent for studying protein interactions by mass spec. The bis-NHS ester arms crosslink interacting proteins, while the discrete PEG-containing biotin arm can be used to isolate or detect the conjugates using (strept)avidin reagents. Figure 18.1 A trifunctional reagent for studying protein interactions by mass spec. The bis-NHS ester arms crosslink interacting proteins, while the discrete PEG-containing biotin arm can be used to isolate or detect the conjugates using (strept)avidin reagents.
Figure 28.6 A trifunctional PIR compound that contains two NHS esters to capture interacting proteins through amide bond formation and a PEG-biotin arm to permit isolation of crosslinked proteins on (strept)avidin supports. Figure 28.6 A trifunctional PIR compound that contains two NHS esters to capture interacting proteins through amide bond formation and a PEG-biotin arm to permit isolation of crosslinked proteins on (strept)avidin supports.

See other pages where Trifunctional Crosslinkers is mentioned: [Pg.170]    [Pg.170]    [Pg.738]    [Pg.214]    [Pg.424]    [Pg.61]    [Pg.201]    [Pg.82]    [Pg.344]    [Pg.280]    [Pg.166]    [Pg.229]    [Pg.230]    [Pg.231]    [Pg.367]    [Pg.369]    [Pg.407]    [Pg.112]    [Pg.164]    [Pg.180]    [Pg.336]    [Pg.336]    [Pg.336]    [Pg.336]    [Pg.337]    [Pg.338]    [Pg.340]    [Pg.342]    [Pg.342]    [Pg.344]    [Pg.510]    [Pg.1020]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Trifunctional

Trifunctional crosslinker

Trifunctional crosslinker

© 2024 chempedia.info