Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-linking effect, glass transition

Elastomeric Modified Adhesives. The major characteristic of the resins discussed above is that after cure, or after polymerization, they are extremely brittie. Thus, the utility of unmodified common resins as stmctural adhesives would be very limited. Eor highly cross-linked resin systems to be usehil stmctural adhesives, they have to be modified to ensure fracture resistance. Modification can be effected by the addition of an elastomer which is soluble within the cross-linked resin. Modification of a cross-linked resin in this fashion generally decreases the glass-transition temperature but increases the resin dexibiUty, and thus increases the fracture resistance of the cured adhesive. Recendy, stmctural adhesives have been modified by elastomers which are soluble within the uncured stmctural adhesive, but then phase separate during the cure to form a two-phase system. The matrix properties are mosdy retained the glass-transition temperature is only moderately affected by the presence of the elastomer, yet the fracture resistance is substantially improved. [Pg.233]

Temperature dependence (related to the temperature dependence of the conformational structure and the morphology of polymers) of the radiation effect on various fluoropolymers e.g., poly (tetrafluoroethylene-co-hexafluoropropylene), poly(tetrafluoroethylene-co-perfluoroalkylvinylether), and poly(tetrafluoroethylene-co-ethylene) copolymers has been reported by Tabata [419]. Hill et al. [420] have investigated the effect of environment and temperature on the radiolysis of FEP. While the irradiation is carried out at temperatures above the glass transition temperature of FEP, cross-linking reactions predominate over chain scission or degradation. Forsythe et al. [421]... [Pg.894]

The temperature dependence of the compliance and the stress relaxation modulus of crystalline polymers well above Tf is greater than that of cross-linked polymers, but in the glass-to-rubber transition region the temperature dependence is less than for an amorphous polymer. A factor in this large temperature dependence at T >> TK is the decrease in the degree of Crystallinity with temperature. Other factors arc the reciystallization of strained crystallites ipto unstrained ones and the rotation of crystallites to relieve the applied stress (38). All of these effects occur more rapidly as the temperature is raised. [Pg.110]

The absorption of moisture critically affects other important resin properties, particularly those associated with low-dielectric and thermomechanical applications. Results of a 96-h boiling water immersion test are presented in Table 2.2. The moisture absorbed decreased substantially with fluoromethylene chain length from n = 3 to n = 6, followed by only modest decreases for n = 8 and 10. This latter behavior was somewhat unexpected and may be the effect of decreased cross-link density counteracting the increased fluorine content. These 100°C measurements are just above the glass transition and the situation may be different at room temperature. These measurements are in progress. [Pg.33]

A unified approach to the glass transition, viscoelastic response and yield behavior of crosslinking systems is presented by extending our statistical mechanical theory of physical aging. We have (1) explained the transition of a WLF dependence to an Arrhenius temperature dependence of the relaxation time in the vicinity of Tg, (2) derived the empirical Nielson equation for Tg, and (3) determined the Chasset and Thirion exponent (m) as a function of cross-link density instead of as a constant reported by others. In addition, the effect of crosslinks on yield stress is analyzed and compared with other kinetic effects — physical aging and strain rate. [Pg.124]


See other pages where Cross-linking effect, glass transition is mentioned: [Pg.202]    [Pg.396]    [Pg.3731]    [Pg.396]    [Pg.35]    [Pg.185]    [Pg.368]    [Pg.341]    [Pg.261]    [Pg.55]    [Pg.185]    [Pg.440]    [Pg.889]    [Pg.662]    [Pg.20]    [Pg.20]    [Pg.49]    [Pg.102]    [Pg.108]    [Pg.108]    [Pg.134]    [Pg.335]    [Pg.555]    [Pg.49]    [Pg.77]    [Pg.156]    [Pg.229]    [Pg.68]    [Pg.158]    [Pg.253]    [Pg.231]    [Pg.798]    [Pg.18]    [Pg.387]    [Pg.162]   


SEARCH



Cross effect

Cross-link effect

Cross-linking glass transition

Glass effect

Glass transition effect

Transition effects

© 2024 chempedia.info