Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Counterions chemical properties

A dramatic impact on chemical properties is achieved by the appropriate choice of counterion. The counterion employed during synthesis can have a marked effect on the anion-exchange selectivity series of conducting polymers.54 Table 3.4 shows the anion-exchange selectivity series obtained for both polypyrrole chloride and polypyrrole perchlorate. As illustrated, polypyrrole salts do not behave similar to conventional ion-exchange resins. [Pg.116]

We have also shown how ion-exchange properties and hydrophobic character can be adjusted.90-91 The potential stimuli or chemical property behavior is dependent on the counterion incorporated during synthesis, as discussed previously. As illustrated in Figure 3.6, the chemical interaction properties (cation exchange, hydrophobic, and anion exchange) and the way they vary as a function of potential are markedly dependent on the counterion (Cl-, pTS", or DS") incorporated during synthesis. [Pg.118]

Studies of the chemical properties of polythiophenes have been limited. As with polypyrroles, a hydrophobic backbone is formed, and the polymer has ion-exchange properties. Modification of chemical properties by incorporation of appropriate counterions is not so readily addressable because polymerization must be carried out from nonaqueous solution and occurs at more anodic potentials compared to pyrrole. [Pg.219]

Capsulation of positively or negatively charged polyelectrolytes with the certain concentration in the capsule interior gives an opportunity to control physical and chemical properties of the microcapsule inner volume. The presence of various polycations inside the capsule causes pH value displacement in capsule volume and its stabilization near the K value of the chosen polyelectrolyte. For example, positively charged poly(allylamine hydrochloride) PAH with a hydroxyl group as a counterion increases pH inside the polyelectrolyte capsules up to 9 from that outside the capsules. [Pg.144]

IC-MS has also been applied for the characterization of ionic liquids (IL) and for the investigation of their long-term stability under process-like conditions. The term ionic liquid commonly refers to a class of molten salts that are by definition liquid below 100 °C. They usually consist of bulky organic cations such as alkylated imidazole, pyrrole, or pyridine derivatives, or quatemized alkyl amines and alkyl phosphines. Common counterions are halides, alkyl sulfates, fluorinated hydrocarbons, carboxylic acids, or amino acids [268]. The physical and chemical properties of ILs are customizable by different cation-anion combinations and by the length of the alkyl chain of the cation. Depending on the... [Pg.894]

Ghromium(III) Compounds. Chromium (ITT) is the most stable and most important oxidation state of the element. The E° values (Table 2) show that both the oxidation of Cr(II) to Cr(III) and the reduction of Cr(VI) to Cr(III) are favored in acidic aqueous solutions. The preparation of trivalent chromium compounds from either state presents few difficulties and does not require special conditions. In basic solutions, the oxidation of Cr(II) to Cr(III) is still favored. However, the oxidation of Cr(III) to Cr(VI) by oxidants such as peroxides and hypohaUtes occurs with ease. The preparation of Cr(III) from Cr(VI) ia basic solutions requires the use of powerful reducing agents such as hydra2ine, hydrosulfite, and borohydrides, but Fe(II), thiosulfate, and sugars can be employed in acid solution. Cr(III) compounds having identical counterions but very different chemical and physical properties can be produced by controlling the conditions of synthesis. [Pg.135]

Manning, G. S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions. 1. Colligative properties. Journal of Chemical Physics, 51, 924-33. [Pg.87]

It should be kept in mind that quantum chemical calculations of structures and magnetic properties generally are done for the isolated carbocation without taking into account its environment and media effects such as solvent, site-specific solvation or counterion effects. This is a critical question since NMR spectra of carbocations with a few exceptions are studied in superacid solutions and properties calculated for the gas-phase species are of little relevance if the electronic structure of carbocations is strongly perturbed by solvent effects. Provided that appropriate methods are used,... [Pg.159]

KP and v can, in contrast to kp, not be determined via the concentration gradient for binary and ternary mixed micelles, because for the calculation of the Nemstian distribution a constant CMC and an almost constant partial molar volume must be assumed. The calculation of aggregation constants of simple bile salt systems based on Eq. (4) yields similar results (Fig. 8b). Assuming the formation of several concurrent complexes, a brutto stability constant can be calculated. For each application of any tenside, suitable markers have to be found. The completeness of dissolution in the micellar phase is, among other parameters, dependent on the pH value and the ionic strength of the counterions. Therefore, the displacement method should be used, which is not dependent on the chemical solubilization properties of markers. For electrophoretic MACE studies, it is advantageous for the micellar constitution (structure of micelle, type of phase micellar or lamellar) to be known for the relevant range of concentrations (surfactant, lipids). [Pg.135]

The Mass Action Model The mass action model represents a very different approach to the interpretation of the thermodynamic properties of a surfactant solution than does the pseudo-phase model presented in the previous section. A chemical equilibrium is assumed to exist between the monomer and the micelle. For this reaction an equilibrium constant can be written to relate the activity (concentrations) of monomer and micelle present. The most comprehensive treatment of this process is due to Burchfield and Woolley.22 We will now describe the procedure followed, although we will not attempt to fill in all the steps of the derivation. The aggregation of an anionic surfactant MA is approximated by a simple equilibrium in which the monomeric anion and cation combine to form one aggregate species (micelle) having an aggregation number n, with a fraction of bound counterions, f3. The reaction isdd... [Pg.349]


See other pages where Counterions chemical properties is mentioned: [Pg.252]    [Pg.134]    [Pg.216]    [Pg.352]    [Pg.19]    [Pg.202]    [Pg.520]    [Pg.219]    [Pg.430]    [Pg.370]    [Pg.430]    [Pg.727]    [Pg.727]    [Pg.1316]    [Pg.198]    [Pg.1624]    [Pg.145]    [Pg.75]    [Pg.303]    [Pg.445]    [Pg.165]    [Pg.397]    [Pg.17]    [Pg.212]    [Pg.10]    [Pg.225]    [Pg.341]    [Pg.221]    [Pg.81]    [Pg.1074]    [Pg.625]    [Pg.343]    [Pg.400]    [Pg.213]    [Pg.345]    [Pg.437]    [Pg.286]    [Pg.419]    [Pg.404]    [Pg.329]   
See also in sourсe #XX -- [ Pg.116 , Pg.186 ]




SEARCH



Counterion

Counterions

© 2024 chempedia.info