Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion-resistance Crystals

The reaction mixture is filtered. The soHds containing K MnO are leached, filtered, and the filtrate composition adjusted for electrolysis. The soHds are gangue. The Cams Chemical Co. electrolyzes a solution containing 120—150 g/L KOH and 50—60 g/L K MnO. The cells are bipolar (68). The anode side is monel and the cathode mild steel. The cathode consists of small protmsions from the bipolar unit. The base of the cathode is coated with a corrosion-resistant plastic such that the ratio of active cathode area to anode area is about 1 to 140. Cells operate at 1.2—1.4 kA. Anode and cathode current densities are about 85—100 A/m and 13—15 kA/m, respectively. The small cathode areas and large anode areas are used to minimize the reduction of permanganate at the cathode (69). Potassium permanganate is continuously crystallized from cell Hquors. The caustic mother Hquors are evaporated and returned to the cell feed preparation system. [Pg.78]

Secondly, crystal defects might be expected to affect the corrosion behaviour of metals which owe their corrosion resistance to the presence of thin passive or thick protective films on their surface. The crystal defects and structural features discussed in Section 20.4 might, in principle, be expected to affect the thickness, strength, adhesion, porosity, composition, solubility, etc. of these surface films, and hence, in turn, the corrosion behaviour of the filmed metal surfaces. Clearly, this is the more common situation in practice. [Pg.36]

Metals which owe their good corrosion resistance to the presence of thin, passive or protective surface films may be susceptible to pitting attack when the surface film breaks down locally and does not reform. Thus stainless steels, mild steels, aluminium alloys, and nickel and copper-base alloys (as well as many other less common alloys) may all be susceptible to pitting attack under certain environmental conditions, and pitting corrosion provides an excellent example of the way in which crystal defects of various kinds can affect the integrity of surface films and hence corrosion behaviour. [Pg.49]

Znj(P04)2 4H2 0 appears in three crystal forms, a-hopeite (rhombic plates), 3-hopeite (rhombic crystals), and p-hopeite (triclinic crystals). Their transition points are at 105, 140 and 163°C respectively. It has been observed that zinc phosphate coatings heated in the absence of air lose their corrosion resistance at between 150 and 163°C. [Pg.711]

Impure metals and alloys exhibit all the structural features and crystal defects of the pure meteils already discussed. In addition, however, impure metals and alloys exhibit many structures which are not observed in pure metals, and which, in many instances, have an extremely important effect on the properties, particularly the corrosion resistance. However, before dealing with the structure of impure metals and alloys, it is necessary to consider the concept of metallurgical components, phases, constituents and equilibrium phase diagrams. [Pg.1270]

Tinplate and Solder. Metallurgical studies were performed to determine the effect of irradiation at low temperature on the corrosion resistance of tinplate and on the mechanical properties and microstructure of tinplate and side-seam solder of the tinplate container. The area of major interest was the effect of low-temperature irradiation on the possible conversion of the tin from the beta form to the alpha form. In the case of pure tin, the transition occurs at 18 °C. It was feared that low-temperature irradiation would create dislocations in the crystal lattice of tin and enhance the conversion of tin from the silvery form to a powdery form rendering the tin coating ineffective in protecting the base steel. Tin used for industrial consumption contains trace amounts of soluble impurities of lead and antimony to retard this conversion for several years. [Pg.35]

Cement and Concrete Concrete is an aggregate of inert reinforcing particles in an amorphous matrix of hardened cement paste. Concrete made of portland cement has limited resistance to acids and bases and will fail mechanically following absorption of crystal-forming solutions such as brines and various organics. Concretes made of corrosion-resistant cements (such as calcium aluminate) or polymer resins can be selected for specific chemical exposures. [Pg.37]

Aluminium on Silicon. Low Contact Resistance. Improved Corrosion Resistance c/f Evaporated A1. Grain Size and Crystal Size Distribution is Function of Acceleration Voltage. Crystal Orientation is strongly (111) under High Acceleration Voltage... [Pg.329]

Aerosol spray delivery, 23 196 Aerosol sprays, 7 773-774 Aerospace applications aluminum alloys, 2 340 artificial graphite in, 72 740-741 for high performance fibers, 13 397-398 of liquid-crystal polymers, 20 85 metal-matrix composites in, 16 191 polyimide matrix composites in, 20 284 Aerospace bearings, corrosion resistance of, 74 452... [Pg.21]

At present the iron-based alloys diffusion saturation by nitrogen is widely used in industry for the increase of strength, hardness, corrosion resistance of metal production. Inexhaustible and unrealized potentialities of nitriding are opened when applying it in combination with cold working [1-3], It is connected with one of important factors, which affects diffusion processes and phase formation and determines surface layer structure, mechanical and corrosion properties, like crystal defects and stresses [4, 5], The topical question in this direction is clarification of mechanisms of interstitial atoms diffusion and phase formation in cold worked iron and iron-based alloys under nitriding. [Pg.491]

A completely novel approach to technical electrolysis for anodic oxygen evolution from alkaline solution is the use of amorphous metals, i.e. chilled melts of nickel/cobalt mixtures whose crystallization is prevented by the addition of refractory metals like Ti, Zr, B, Mo, Hf, and P (46-51). For this type of material, enhanced catalytic activity in heterogeneous catalysis of gas-phase reactions has been observed (51). These amorphous metals are shown to be more corrosion resistant than the respective crystallized alloys, and the oxides being formed at their surfaces often exhibit a higher catalytic activity than those formed on ordered alloys, as shown by Kreysa (52-54). [Pg.105]

In weld-overlay cladding, the solidifying melt forms columnar crystals perpendicular to the wall surface. Along the grain boundary of these crystals, the corrosion resistance is lower than in the rolled material. In the case of heavy corrosion, at least a two-layer weld-overlay cladding should therefore be selected. [Pg.223]

Chemical Properties. The chemical durability is a function of the durability of the crystals and the residual glass. Generally, highly siliceous glass-ceramics with low alkali residual glasses, such as glass-ceramics based on quartz and (3-spodumene, have excellent chemical durability and corrosion resistance similar to that obtained in borosilicate glasses. [Pg.320]


See other pages where Corrosion-resistance Crystals is mentioned: [Pg.13]    [Pg.13]    [Pg.320]    [Pg.322]    [Pg.131]    [Pg.437]    [Pg.132]    [Pg.52]    [Pg.57]    [Pg.117]    [Pg.3]    [Pg.279]    [Pg.481]    [Pg.76]    [Pg.904]    [Pg.653]    [Pg.347]    [Pg.710]    [Pg.38]    [Pg.441]    [Pg.307]    [Pg.55]    [Pg.310]    [Pg.902]    [Pg.359]    [Pg.55]    [Pg.86]    [Pg.3]    [Pg.47]    [Pg.322]    [Pg.58]    [Pg.739]    [Pg.1771]   


SEARCH



Corrosion resistance

© 2024 chempedia.info