Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion process electrode potential

The thermodynamic driving force behind the corrosion process can be related to the corrosion potential adopted by the metal while it is corroding. The corrosion potential is measured against a standard reference electrode. For seawater, the corrosion potentials of a number of constructional materials are shown in Table 53.1. The listing ranks metals in their thermodynamic ability to corrode. Corrosion rates are governed by additional factors as described above. [Pg.891]

When corrosion occurs, if the cathodic reactant is in plentiful supply, it can be shown both theoretically and practically that the cathodic kinetics are semi-logarithmic, as shown in Fig. 10.4. The rate of the cathodic reaction is governed by the rate at which electrical charge can be transferred at the metal surface. Such a process responds to changes in electrode potential giving rise to the semi-logarithmic behaviour. [Pg.113]

In view of the electrochemical nature of corrosion, it has seemed reasonable to many investigators to assume that suitable accelerated corrosion tests could be made by observing the response to electrolytic stimulation of the corrosion processes, or by attaching particular significance to the results of quickly made electrode potential and current measurements. [Pg.1020]

The corrosion process is observed as a series of events which all contribute to the overall corrosion rate. Measurement of rest potential fluctuations between two identical electrodes of potential fluctuations with respect to a fixed reference can be carried out. The electrochemical noise output spectrum is analysed using digitised data. The interpretation requires electrochemical expertise, and the method is therefore usually provided as a specialised service. [Pg.1140]

Flade potential, 247 Flame-annealed gold surfaces and the work of Kolb, 81 Flat band potential, 483 Fluctuations asymmetrical and unstable systems, 255 controlling progress in pitting, 299 in pitting dissolution, 251 and corrosion processes, 217 during dissolution, 252 at electrodes, theory, 281 during film breakdown, 233 and mathematical expressions thereof, 276... [Pg.631]

Potentials of Zero Charge of Electrodes Nonequilibrium Fluctuations in the Corrosion Process Electrocatalysis... [Pg.247]

The CPE appears to arise solely from roughening of the surface by the corrosion process. This was verified with IS experiments on iron and several steels in 15% HC1 at 25°C. The electrodes were polished with alumina and maintained at 150 mV cathodic of the rest potential. Complex plane plots of the impedance responses were nearperfect semi-circles centered on the V axis. Analyses via EQIVCT using the Rq+P/R circuit, gave rise to n-values of the CPE in excess of 0.93 in all cases and remained constant throughout the tests. [Pg.640]

A bare surface of silicon can only exist in fluoride containing solutions. In reality, in these media, the electrode is considered to be passive due to the coverage by Si— terminal bonds. Nevertheless, the interface Si/HF electrolyte constitutes a basic example for the study of electrochemical processes at the Si electrode. In this system, the silicon must be considered both as a charge carrier reservoir in cathodic reactions, and as an electrochemical reactant under anodic polarization. Moreover, one must keep in mind that, according to the standard potential of the element, both anodic and cathodic charge transfers are involved simultaneously (corrosion process) in a wide range of potentials. [Pg.314]

Electrochemical noise consists of low-frequency, low-amplitude fluctuations of current and potential due to electrochemical activity associated with corrosion processes. ECN occurs primarily at frequencies less than 10 Hz. Current noise is associated with discrete dissolution events that occur on a metal surface, while potential noise is produced by the action of current noise on an interfacial impedance (140). To evaluate corrosion processes, potential noise, current noise, or both may be monitored. No external electrical signal need be applied to the electrode under study. As a result, ECN measurements are essentially passive, and the experimenter need only listen to the noise to gather information. [Pg.347]

Copper, being a noble metal, has good resistance to corrosion. A thin adherent film of cuprous oxide and cupric carbonate is formed due to corrosion. Passivation is not a prominent process. The dissolved copper in solution affects the electrode potential such that the increase in velocity of the solution in contact with the metal results in increasing attack of the metal. Thus cuprous oxide is produced under dynamic flow of the solution. The thickness of the oxide film is about 500 nm. [Pg.238]

Sacrificial anode — is a piece of metal used as an anode in electrochemical processes where it is intended to be dissolved during the process. In -+ corrosion protection it is a piece of a non-noble metal or metal alloy (e.g., magnesium, aluminum, zinc) attached to the metal to be protected. Because of their relative -+ electrode potentials the latter is established as the -+ cathode und thus immune to corrosion. In -+ electroplating the metal used as anode may serve as a source for replenishing the electrolyte which is consumed by cathodic deposition. The sodium-lead alloy anode used in the electrochemical production of tetraethyl lead may also be considered as a sacrificial anode. [Pg.591]

There are many considerations that must be taken into account when choosing a particular carbon, or carbon structure, as an electrocatalyst support. In hot phosphoric acid at cathodic potentials, the carbon surface is capable of being oxidized to carbon dioxide. The degree of oxidation will depend on the pretreatment of the carbon (for instance, the degree of graphitization), on the carbon precursor, and the provenance. There are two important parameters that will govern the primary oxidation rate for any given carbon material in an electrochemical environment. These are electrode potential (the carbon corrosion is an electrochemical process and therefore will increase rapidly as the electrode potential is raised) and temperature. [Pg.404]


See other pages where Corrosion process electrode potential is mentioned: [Pg.2430]    [Pg.2435]    [Pg.90]    [Pg.330]    [Pg.1159]    [Pg.218]    [Pg.455]    [Pg.131]    [Pg.226]    [Pg.227]    [Pg.227]    [Pg.240]    [Pg.489]    [Pg.19]    [Pg.21]    [Pg.169]    [Pg.203]    [Pg.41]    [Pg.75]    [Pg.356]    [Pg.118]    [Pg.118]    [Pg.138]    [Pg.242]    [Pg.275]    [Pg.277]    [Pg.291]    [Pg.337]    [Pg.116]    [Pg.656]    [Pg.126]    [Pg.145]    [Pg.249]    [Pg.281]    [Pg.283]    [Pg.297]    [Pg.343]   


SEARCH



Corrosion potential

Corrosion process applied electrode potential

Corrosion process electronic electrode potential

Corrosion process ionic electrode potential

Corrosive potential

Electrode process

Electrode processe

Electrodes processing

© 2024 chempedia.info