Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion ceramic materials

Development of practical and low cost separators has been an active area of ceU development. CeU separators must be compatible with molten lithium, restricting the choice to ceramic materials. Early work employed boron nitride [10043-11-5] BN, but a more desirable separator has been developed using magnesium oxide [1309-48-4], MgO, or a composite ofMgO powder—BN fibers. Corrosion studies have shown that low carbon steel or... [Pg.585]

Packed vs Plate Columns. Relative to plate towers, packed towers are more useful for multipurpose distillations, usually in small (under 0.5 m) towers or for the following specific appHcations severe corrosion environment where some corrosion-resistant materials, such as plastics, ceramics, and certain metaUics, can easily be fabricated into packing but may be difficult to fabricate into plates vacuum operation where a low pressure drop per theoretical plate is a critical requirement high (eg, above 49,000 kg/(hm ) (- 10, 000 lb/(hft )) Hquid rates foaming systems or debottlenecking plate towers having plate spacings that are relatively close, under 0.3 m. [Pg.174]

Corrosivity. Corrosivity is an important factor in the economics of distillation. Corrosion rates increase rapidly with temperature, and in distillation the separation is made at boiling temperatures. The boiling temperatures may require distillation equipment of expensive materials of constmction however, some of these corrosion-resistant materials are difficult to fabricate. For some materials, eg, ceramics (qv), random packings may be specified, and this has been a classical appHcation of packings for highly corrosive services. On the other hand, the extensive surface areas of metal packings may make these more susceptible to corrosion than plates. Again, cost may be the final arbiter (see Corrosion and corrosion control). [Pg.175]

Because of the corrosiveness of the reaction media, ceramic materials, glass, graphite, rigid-type PVC, and enameled or coated steel are recommended for pipes, cocks and valves, pumps, and cooling systems. [Pg.157]

Boron nitride is one of the most outstanding corrosion-resistant materials. It is inert to gasoline, benzene, alcohol, acetone, chlorinated hydrocarbons and other organic solvents. It is not wetted by molten aluminum, copper, cadmium, iron, antimony, bismuth, silicon, germanium, nor by many molten salts and glasses. It is used extensively as crucible material, particularly for molten metals, glasses and ceramic processing. [Pg.442]

Uniform microstractuie is cracial to the superior performance of advanced ceramics. In a cerantic material, atoms are held in place by strong chentical bonds that ate impervious to attack by corrosive materials or heat. At the same time, these bonds are not capable of much "give." When a ceramic material is subjected to mechanical stresses, these stresses concentrate at minute imperfections in the microstmcture, initiating a crack. The stresses at the top of the crack exceed the threshold for breaking the adjacent atomic bonds, and the crack propagates throughout the material causing a catastrophic brittle failure of the ceramic body. The rehability of a ceramic component is directly related to the number and type of imperfections in its microstmcture. [Pg.78]

In the last decade, some systems, such as the Dionex DX-500, have been manufactured with a flow path using corrosion-resistant materials such as polyetheretherketone (PEEK , ICI Americas Wilmington, DE), rather than the traditional stainless steel. Since stainless steel is prone to corrosion by salts, particularly halides, the introduction of titanium, ceramic, and PEEK was welcomed by those performing chromatography in aqueous systems, particularly in biological applications. PEEK , however, is not useful in applications requiring pressures greater than about 4000 psi. [Pg.3]

Ceramic materials have superior properties when it comes to corrosion resistance, temperature... [Pg.303]

Use of the ceramic honeycomb packing structure in the recuperator keeps fuel and air substantially isolated as they travel through the recuperator. Various ceramic materials such as cordierite, mullite, alumina and silicon carbide can be used to fabricate honeycomb beds. While metallic materials have the potential to be used in honeycomb bed, corrosion resistance is a major issue... [Pg.139]

Ceramic Materials An example of a sufficiently conductive metal oxide is magnetite Fe304, which has been used, for example, in the past as corrosion resistant anode material for industrial chlorine evolution (it can be smelted and casted at 1500 °C, but it is a very brittle material). [Pg.44]

Related to the attack of polycrystalline ceramic materials by aqueous media is the hydrolysis of silicate glasses. The following relationship has been developed to describe the effect of time and temperature on the acid corrosion (10% HCl) of silicate... [Pg.243]

Equipment made of metal and subject to high temperatures or abrasive or corrosive conditions often is lined with ceramic material. [Pg.221]

If local stresses exceed the forces of cohesion between atoms or lattice molecules, the crystal cracks. Micro- and macrocracks have a pronounced influence on the course of chemical reactions. We mention three different examples of technical importance for illustration. 1) The spallation of metal oxide layers during the high temperature corrosion of metals, 2) hydrogen embrittlement of steel, and 3) transformation hardening of ceramic materials based on energy consuming phase transformations in the dilated zone of an advancing crack tip. [Pg.331]

With chemical corrosion we mean the decay of a material under the influence of a corrosive substance. When brass contains more than 15 % (m/m) of zinc, the zinc and copper ions dissolve in an aqueous environment at a high temperature. Subsequently the copper ions are deposited on the metal surface. Nitric acid is able to selectively dissolve iron out of certain ceramic materials. Molecules of a sol-... [Pg.176]

Chemically bonded advanced ceramic materials with high wear and corrosion resistance for agricultural and industrial applications from steel and other industry waste. [Pg.322]


See other pages where Corrosion ceramic materials is mentioned: [Pg.495]    [Pg.59]    [Pg.54]    [Pg.471]    [Pg.208]    [Pg.417]    [Pg.168]    [Pg.168]    [Pg.737]    [Pg.142]    [Pg.139]    [Pg.140]    [Pg.28]    [Pg.35]    [Pg.83]    [Pg.44]    [Pg.427]    [Pg.241]    [Pg.241]    [Pg.260]    [Pg.261]    [Pg.272]    [Pg.97]    [Pg.95]    [Pg.495]    [Pg.54]    [Pg.841]    [Pg.59]    [Pg.319]    [Pg.350]    [Pg.9]    [Pg.126]    [Pg.128]   
See also in sourсe #XX -- [ Pg.712 ]




SEARCH



Ceramic materials

Corrosive material

Materials corrosion

© 2024 chempedia.info