Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cork, carbonized

Cork, Carbonized Davis (Ref) reports that liquid oxygen explosives (LOX) made from carbonized cork and from kieselguhr mixed with petroleum were used in blasting the Simplon tunnel in 1899 Ref Davis (1943), 356... [Pg.324]

Ethyl bromide soon distils over, and collects as heavy oily drops under the water in the receiving flask, evaporation of the very volatile distillate being thus prevented. If the mixture in the flask A froths badly, moderate the heating of the sand-bath. When no more oily drops of ethyl bromide come over, pour the contents of the receiving flask into a separating-funnel, and carefully run oflF the heavy lower layer of ethyl bromide. Discard the upper aqueous layer, and return the ethyl bromide to the funnel. Add an equal volume of 10% sodium carbonate solution, cork the funnel securely and shake cautiously. Owing to the presence of hydrobromic and sulphurous acids in the crude ethyl bromide, a brisk evolution of carbon dioxide occurs therefore release the... [Pg.101]

Now transfer the cold distillate to a separating-funnel, and shake vigorously with about 50-60 ml. of ether run oflF the lower aqueous layer and then decantf the ethereal solution through the mouth of the funnel into a 200 ml. conical flask. Replace the aqueous layer in the funnel, and extract similarly twice more with ether, combining the ethereal extracts in the conical flask. Add 3-4 g. of dry powdered potassium carbonate to the ethereal solution, securely cork the flask and shake the contents gently. The ethereal solution of the phenol... [Pg.196]

Higher alcohols. These may be purified by drying with anhydrous potassium carbonate or with anhydrous calcium sulphate, and fractionated after filtration from the desiccant. Bark corks (or ground glass joints) should be used rubber stoppers are slightly attacked. The boiUng points of the fractions to be collected are as follows —... [Pg.170]

The 0 -S.V alcoholic potassium hydroxide solution Is prepared by dissolving 16g. of potassium hydroxide pellets in 500 ml. of alcohol (or industrial spirit) contained in a bottle closed by a cork. After standing for 24 hours, the clear solution is decanted or filtered from the residue of potassium carbonate. It is said that a solution in methyl alcohol has better keeping qualities than that in ethyl alcohol. [Pg.290]

Place 50 g. of anhydrous calcium chloride and 260 g. (323 ml.) of rectified spirit (95 per cent, ethyl alcohol) in a 1-litre narrow neck bottle, and cool the mixture to 8° or below by immersion in ice water. Introduce slowly 125 g. (155 ml.) of freshly distilled acetaldehyde, b.p. 20-22° (Section 111,65) down the sides of the bottle so that it forms a layer on the alcoholic solution. Close the bottle with a tightly fitting cork and shake vigorously for 3-4 minutes a considerable rise in temperature occurs so that the stopper must be held well down to prevent the volatilisation of the acetaldehyde. Allow the stoppered bottle to stand for 24-30 hours with intermittent shaking. (After 1-2 hours the mixture separates into two layers.) Separate the upper layer ca. 320 g.) and wash it three times with 80 ml. portions of water. Dry for several hours over 6 g. of anhydrous potassium carbonate and fractionate with an efficient column (compare Section 11,17). Collect the fraction, b.p. 101-104°, as pure acetal. The yield is 200 g. [Pg.327]

Place a mixture of 30 g. of 3 5-dinitrobenzoic acid (Section IV,168 and 33 g. of phosphorus pentachloride in a Claisen flask fit a reflux condenser into the short neck and cork the other neck and side arm (compare Fig. Ill, 31, 1). Heat the mixture in an oil bath at 120-130° for 75 minutes. Allow to cool. Remove the phosphorus oxychloride by distillation under reduced pressure (25°/20 mm.) raise the temperature of the bath to 110°. The residual 3 5-dinitrobenzoyl chloride solidifies on cooling to a brown mass the yield is quantitative. Recrystallise from carbon tetrachloride the yield is 25 g., m.p. 67-68° and this is satisfactory for most purposes. Further recrystallisation from a large volume of light petroleum b.p. 40-60°, gives a perfectly pure product, m.p. 69 -6°. [Pg.974]

In a 2-1. round-bottomed flask are placed 120 g. (1.83 moles) of 92% ethylenediamine (Note 1), 300 ml. of 95% ethanol, and 300 ml. of water. The flask is attached to an efficient reflux condenser, and 121 ml. of carbon disulfide is placed in a separatory funnel attached to the top of the condenser by means of a notched cork. About 15 to 20 ml. of the carbon disulfide is added, and the flask is shaken to mix the contents. A vigorous reaction takes place (Note 2), and it may be necessary to cool the flask. After the reaction has started, a water bath at 60° is placed under the flask and the balance of the carbon disulfide is added at such a rate that the vapors reflux about one-third the way up the condenser. About 2 hours are required for the addition of the carbon disulfide. At this time the bath temperature is raised to about 100°, and the mixture is allowed to reflux for 1 hour. Then 15 ml. of concentrated hydrochloric acid is added, and the mixture is refluxed under a good hood (bath at 100°) for 9 to 10 hours. The mixture is cooled in an ice bath, and the product is filtered by suction on a Buchner funnel and washed with 200-300 ml. of cold acetone (Note 3). A yield of 156-167 g. (83-89%) of white crystals is obtained melting at 197-198° (Note 4). [Pg.34]

The amine attacks cork and rubber and absorbs carbon dioxide from the air. It is best distilled in a flask having an in-set side arm and collected in a distilling flask protected by a soda-lime tube. [Pg.78]

Typical insulating materials, therefore, are usually made of nonmetallic materials and are filled with small air pockets. They include magnesium carbonate, cork, felt, cotton batting, rock or glass wool, and diatomaceous earth. Asbestos was once widely used for insulation, but it has been found to be a health hazard and has, therefore, been banned in new construction in the U.S. [Pg.8]

The phosphorus pentoxide is introduced into a small distilling flask (200 c.c.) attached to a short condenser. As the pentoxide absorbs moisture rapidly and becomes sticky, it is convenient to push the neck of the distilling flask through a cork which fits the phosphorus pentoxide bottle, and then to shake in the oxide until the required weight is obtained. The powdered acetamide is immediately introduced and shaken up, and the mixture distilled over a small flame, which is constantly moved about. Add to the distillate about half its volume of water, and then solid potassium carbonate, until no more dissolves. The upper layer of liquid, which consists of methyl cyanide, is separated and distilled over a little fresh phosphorus pentoxide with thermometer. Yield, about 5 grams. [Pg.79]

Dicyclohexylammonium nitrite s (DCHN) has a solubility of 3-9g in 100 g of aqueous solution at 25°C, giving a solution pH of about 6-8. Its vapour pressure at 25°C appears to be about 1-3 x 10 N/m but the value for commercial materials depends markedly on purity. It may attack lead, magnesium, copper and their alloys and may discolour some dyes and plastics. Cyclohexylammonium cyclohexyl carbamate (the reaction product of cyclohexylamine and carbon dioxide, usually described as cyclo-hexylamine carbonate or CHC)" is much more volatile than DCHN (vapour pressure 53 N/m at 25°C), and much more soluble in water (55 g in 100cm of solution at 25°C, giving a pH of 10-2). It may attack magnesium, copper, and their alloys, discolour plastics, and attack nitrocellulose and cork. It is said to protect cast iron better than DCHN, and to protect rather better in the presence of moderate concentrations of aggressive salts. [Pg.773]

Non-metallic Materials Carbides, carbon, ceramic fiber, ceramic, cermet, composite, cork, elastomer, felt, fiber, glass, glycerin, non-metallic bearing material, rubber (natural), rubber (synthetic), silicone, wood, leather. [Pg.601]

Molex no s 2 3 are physical mixts of AN 52—84, K perchlorate 0—20, DNT oil 7—12, baked cork 1—10, A1 powd 5—7 Ca carbonate 1%. They exhibited satisfactory sensitivity to impact, friction, flame initiation, and had excellent stability. Philips (Ref 4) reported on tests of Molex B and BB , manufd by the National Explosives Co. They are described as physical mixts of AN 80.77—85.06, flake A1 6.02—6.10, DNT oil 4.32—5.84, activated cork 2.55—4.47, Ca stearate 1.10—1.99 and Ca carbonate 0.83-0.95%. They were shown to be stable, to have fairly high brisance, but to be sufficiently sensitive to expl in the rifle bullet impact test. Byers (Refs 1 3) describes blasting expls similar in compn... [Pg.172]


See other pages where Cork, carbonized is mentioned: [Pg.528]    [Pg.528]    [Pg.97]    [Pg.98]    [Pg.102]    [Pg.103]    [Pg.105]    [Pg.106]    [Pg.255]    [Pg.348]    [Pg.407]    [Pg.459]    [Pg.482]    [Pg.567]    [Pg.669]    [Pg.733]    [Pg.781]    [Pg.899]    [Pg.910]    [Pg.1005]    [Pg.1039]    [Pg.450]    [Pg.29]    [Pg.76]    [Pg.56]    [Pg.107]    [Pg.383]    [Pg.136]    [Pg.255]    [Pg.348]   
See also in sourсe #XX -- [ Pg.356 ]

See also in sourсe #XX -- [ Pg.356 ]




SEARCH



Corks

© 2024 chempedia.info