Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Seawater copper removal

The copper-chelating abihty of sahcylaldoxime has been used to remove copper from brine in a seawater desalination plant effluent. A carbon—sorbate bed produced by sorption of the oxime on carbon proved to be extremely effective in the continuous process (99). In another apphcation, the chelating abihty of sahcylaldoxime with iron and copper was used to stabilize bleaching powders containing inorganic peroxide salts (100). [Pg.508]

Prior to the introduction of ion-selective electrode techniques, in situ monitoring of free copper (II) in seawater was not possible due to the practical limitations of existing techniques (e.g., ligand competition and bacterial reactions). Ex situ analysis of free copper (II) is prone to experimental error, as the removal of seawater from the ocean can lead to speciation of copper (II). Potentially, a copper (II) ion electrode is capable of rapid in situ monitoring of environmental free copper (II). Unfortunately, copper (II) has not been used widely for the analysis of seawater due to chloride interference that is alleged to render the copper nonfunctional in this matrix [288]. [Pg.172]

Bruland et al. [122] have shown that seawater samples collected by a variety of clean sampling techniques yielded consistent results for copper, cadmium, zinc, and nickel, which implies that representative uncontaminated samples were obtained. A dithiocarbamate extraction method coupled with atomic absorption spectrometry and flameless graphite furnace electrothermal atomisation is described which is essentially 100% quantitative for each of the four metals studied, has lower blanks and detection Emits, and yields better precision than previously published techniques. A more precise and accurate determination of these metals in seawater at their natural ng/1 concentration levels is therefore possible. Samples analysed by this procedure and by concentration on Chelex 100 showed similar results for cadmium and zinc. Both copper and nickel appeared to be inefficiently removed from seawater by Chelex 100. Comparison of the organic extraction results with other pertinent investigations showed excellent agreement. [Pg.243]

Tominaga et al. [682,683] studied the effect of ascorbic acid on the response of these metals in seawater obtained by graphite-furnace atomic absorption spectrometry from standpoint of variation of peak times and the sensitivity. Matrix interferences from seawater in the determination of lead, magnesium, vanadium, and molybdenum were suppressed by addition of 10% (w/v) ascorbic acid solution to the sample in the furnace. Matrix effects on the determination of cobalt and copper could not be removed in this way. These workers propose a direct method for the determination of lead, manganese, vanadium, and molybdenum in seawater. [Pg.246]

Morris [814] separated microgram amounts of vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc from 800 ml of seawater by precipitation with ammonium tetramethylenedithiocarbamate, and extraction of the chelates at pH 2.5 with methylisobutyl ketone. Solvent was removed from the extract, the residue was dissolved in 25% nitric acid, and the inorganic residue was dispersed in powdered cellulose. The mixture was pressed into a pellet for X-ray fluorescence measurements. The detection limit was 0.14 pig or better when a 10 min counting period was used. [Pg.278]

Huang et al. [66] removed 137caesium from 4 litre samples of seawater by adsorption onto a filter coated with copper (II) and then determined it by with 47% recovery by y-ray spectrometry. [Pg.352]

In the method for [17] inorganic arsenic the sample is treated with sodium borohydride added at a controlled rate (Fig. 10.1). The arsine evolved is absorbed in a solution of iodine and the resultant arsenate ion is determined photometrically by a molybdenum blue method. For seawater the range, standard deviation, and detection limit are 1—4 xg/l, 1.4%, and 0.14 pg/1, respectively for potable waters they are 0-800 pg/1, about 1% (at 2 pg/1 level), and 0.5 pg/1, respectively. Silver and copper cause serious interference at concentrations of a few tens of mg/1 however, these elements can be removed either by preliminary extraction with a solution of dithizone in chloroform or by ion exchange. [Pg.458]

Wheeler et al. (2002) established acute freshwater and saltwater SSDs for 21 substances, including ammonia, metals, several pesticides, and narcotic substances. Using HC5 calculations and curve slope, they found freshwater species were either more sensitive (ammonia, copper, nickel, or zinc) or less sensitive (chlordane, endosulfan, pentachlorophenol) than saltwater species. In some cases, the distributions were very similar however, the taxonomic compositions of the freshwater and saltwater data sets were not always comparable. Maltby et al. (2005) analyzed SSDs for 16 insecticides and inter alia compared SSDs based on saltwater and freshwater species. They concluded (page 379) that the taxonomic composition of the species assemblage used to construct the SSD does have a significant influence on the assessment of hazard, but the habitat and geographical distribution of the species do not. Differences in freshwater and saltwater SSDs were primarily driven by taxonomy (e.g., both crustaceans and insects are present in freshwater, but only crustaceans are found in seawater). Correcting for the disparity in taxonomy removed habitat differences. [Pg.71]

A large discrepancy between the two concentration techniques was found for the copper results. The average difference was 72 27 ngl-1. Bruland and Frank analysed the Chelex column effluent by the solvent extraction technique, and found 63 and 135ngl-1 as the copper content for the samples at 25 m and 2500 m, respectively. These values are almost equal to the difference between the Chelex and solvent extraction results. Therefore, they concluded that about 60% of the copper in seawater (unfiltered and unacidified) is not removed by the Chelex technique. As Riley et al. suggested, copper in seawater is not liberated by the Chelex resin because of association with colloids and fine particulates [62]. In order to avoid this error, acidification and heating of seawater is necessary prior to the Chelex treatment. According to the results of Bruland and Franks, acidification and storage followed by solvent extraction appears to be superior to the Chelex resin concentration for the quantitative determination of copper in seawater [15]. Similar problems have been pointed out by Eisner and Mark, Jr. [63] and Florence and Batley [64]. [Pg.112]

Sulfur and several sulfides, highly insoluble precipitates with solubility products as low as 1.6 X 10 for mercuric sulfide, have been used to concentrate trace metals from water. Sulfur, produced from (NH4)aS and HNO3 ( 0), coprecipitated several metals including mercury. Iron(III) sulfide (also used in a commercial process SULFEX) removes several metals (61) and is better than hydroxide in the presence of EDTA and other chelating agents (62). Lead sulfide has been used to collect silver for aqueous solution (63), molybdenum sulfide to collect arsenic from 2 M hydrochloric acid solution (64), and copper sulfide to concentrate cobalt and zinc from seawater (65). [Pg.21]

Adsorption by carbon, which is one of the oldest adsorption methods used, has been reviewed and evaluated for the preconcentration of trace metals (794). Many authors have discussed the preparation of activated charcoal and carbon from a wide variety of usually local sources. The applications to water treatment are far too numerous to mention other than a few. Jo (795) carbonized a resin and a gum and hydrated the residue above 600 C to produce an adsorbant selective for cadmium(II). Kuzin et al, 196) used deashed active carbon and oxidized carbon for the quantitative sorption of copper, lead, zinc, and nickel from nearly neutral solutions containing 1-2 M alkali-metal halide. Pearson and Siviour (797) converted the metal-ion species to amine complexes before adsorbing these onto carbonaceous materials such as brown charcoal char or cellulose. Mercury vapor can be removed from a solution by reduction followed by passage of a nitrogen stream and adsorption by activated charcoal (798). Activated carbon, which had been oxidized with nitric acid, has been used to extract several metals including divalent nickel, cadmium, cobalt, zinc, manganese, and mercury from fresh water, brine, and seawater (799, 200). [Pg.29]


See other pages where Seawater copper removal is mentioned: [Pg.121]    [Pg.130]    [Pg.412]    [Pg.384]    [Pg.170]    [Pg.171]    [Pg.173]    [Pg.175]    [Pg.290]    [Pg.493]    [Pg.314]    [Pg.75]    [Pg.91]    [Pg.135]    [Pg.164]    [Pg.2510]    [Pg.3048]    [Pg.173]    [Pg.412]    [Pg.117]    [Pg.130]    [Pg.132]    [Pg.62]    [Pg.90]    [Pg.266]    [Pg.728]    [Pg.678]    [Pg.907]    [Pg.1142]    [Pg.26]    [Pg.99]    [Pg.37]    [Pg.34]    [Pg.728]    [Pg.84]    [Pg.393]    [Pg.3838]    [Pg.701]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Copper removal

Copper seawater

© 2024 chempedia.info