Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper salts, ligands

Some ligand-exchange CSPs have been used at preparative level [31, 32]. In this case it must be taken into account that an extraction process, to remove the copper salts added to the mobile phase, must be performed following the chromatographic process [33]. Teicoplanin, in contrast, resolves all ordinary a and (3-amino acids with mobile phases consisting of alcohol/water mixtures. No buffer is needed in the... [Pg.4]

Copper-complexes prepared with other type of N-chelating ligands have been also prepared and evaluated as catalysts for the Diels-Alder reaction. Eng-berts et al. [103] studied enantioselective Diels-Alder reaction of 3-phenyl-l-(2-pyridyl)-2-propen-l-one with cyclopentadiene in water (Scheme 39). By using coordinating chiral, commercially available a-amino-adds and their derivatives with copper salts as catalysts, they obtained the desired product with yields generally exceeding 90%. With L-abrine (72 in Scheme 39) as chiral moiety, an enantiomeric excess of 74% could be achieved. Moreover, the catalyst solution was reused with no loss of enantioselectivity. [Pg.124]

The above-described structures are the main representatives of the family of nitrogen ligands, which cover a wide spectrum of activity and efficiency for catalytic C - C bond formations. To a lesser extent, amines or imines, associated with copper salts, and metalloporphyrins led to good catalysts for cyclo-propanation. Interestingly, sulfinylimine ligands, with the chirality provided solely by the sulfoxide moieties, have been also used as copper-chelates for the asymmetric Diels-Alder reaction. Amide derivatives (or pyridylamides) also proved their efficiency for the Tsuji-Trost reaction. [Pg.144]

The first examples of cationic exchange of bis(oxazoline)-metal complexes used clays as supports [49,50]. Cu(II) complexes of ligands ent-6a, 6b, and 6c (Fig. 15) were supported on three different clays laponite (a synthetic clay), bentonite, and montmorillonite KIO. The influence of the copper salt from which the initial complexes were prepared, as well as that of the solvent used in the cationic exchange, was analyzed. [Pg.174]

Similarly, highly enantioselective transformations were reported by using other chiral functionalised non-symmetric (138) or C2 symmetric NHC pro-ligands (139-140) (Fig. 2.24) in the presence of organometallic bases and copper salts [111, 112]. [Pg.55]

Enantioselective Cyclopropanation. Enantioselective versions of both copper and rhodium cyclopropanation catalysts are available. The copper-imine class of catalysts is enantioselective when chiral imines are used. Some of the chiral ligands that have been utilized in conjunction with copper salts are shown in Scheme 10.10. [Pg.931]

The idea of Hoveyda with co-workers to employ their peptide ligands (e.g., 295) as chiral inductors in allylic substitutions with dialkylzincs turned out to be very rewarding.399-401 As a result of meticulous screening of numerous optically active ligands, copper salts, and substrates under various conditions, they achieved excellent results for aliphatic alkenes. Particularly, allylic substitution products with tertiary 297 and quaternary 299 carbon centers were obtained regioselectively and with 78-96% ee (Scheme 151).401... [Pg.404]

The initial question was whether the active catalyst is copper metal, copper(I), or copper(II), because all metal precursors gave results. Without the proper control of the valence state and the ligand environment the selectivities for the copper catalysed cyclopropanations (or carbene insertion reactions) have remained low or inconsistent for a long period of time. It was only in the sixties that a more systematic study of these issues was started. Several divalent copper salts were successfully used, but Kochi and Salomon [1] showed with the use of Cu(I)OTf that most likely copper(I) was the actual species needed for this reaction. [Pg.360]

CuOTf/PyBox System The first direct asymmetric addition of alkynes to imines, generated from aldehydes and amines in situ, was reported by using copper salts in the presence of chiral PyBox ligand (Scheme 5.2). The products were obtained in good yields and excellent enantioselectivities in most cases. When toluene was used as solvent, up to 93% yield and 99% ee were obtained. Up to 99.5% ee was obtained when the reaction was carried out in 1,2-dichloroethane. The reaction can also be performed in water smoothly, and good enantioselectivities (78-91% ee) were obtained. [Pg.131]

Working with diazo compounds, known since the early 1900s to undergo loss of dinitrogen when treated with copper or copper salts, Yates described in 1952 the possibility that transition metals could form an intermediate that combined units of the diazo compound and the metal (Eq. 1, L = ligand) and acted like a carbene in addition and insertion reactions. Somewhat later, but independently, E. O. Fischer isolated and characterized stable metal carbenes that could also undergo cyclopro-panation reactions." They were derived from transition metals on the left side of the... [Pg.562]

A variety of palladium(O) or palladium(ii)/phosphine systems have been used as catalyst precursors (Figure 9). Triphenylphosphine was usually the ligand of choice until Farina showed in 1991 that the use tri-(2-furyl)phosphine enhanced reaction rates. The positive effects of additives such as copper salts and diethylamine ... [Pg.13]

As shown in equation 29, l,l-bis(iodozincio)ethane was reacted with cinnamyl carbonates in the presence of Pd(0) catalyst with chiral phosphine ligand, MOP51,52. The formed organozinc intermediate was treated with propargyl bromide under the mediation of copper salt. The observed asymmetric induction reached up to 33% . [Pg.664]

The Suzuki coupling of aryl halides was also extended to tosylates recently. Benzothiazole 5-tosylate reacted with m-xylene-2-boronic acid (6.13.) to give the coupled product in 94% yield using palladium acetate and a stericly congested biphenyl based phosphine ligand as catalyst.17 Another class of less commonly utilised cross-coupling partners are methyltio derivatives. In the presence of a copper salt, which activates the carbon-sulphur bond, 2-methyltio-benzotiazol coupled readily with a series of arylboronic acids.18... [Pg.102]


See other pages where Copper salts, ligands is mentioned: [Pg.226]    [Pg.133]    [Pg.231]    [Pg.22]    [Pg.96]    [Pg.132]    [Pg.174]    [Pg.184]    [Pg.508]    [Pg.732]    [Pg.133]    [Pg.104]    [Pg.325]    [Pg.171]    [Pg.174]    [Pg.390]    [Pg.55]    [Pg.645]    [Pg.139]    [Pg.300]    [Pg.651]    [Pg.653]    [Pg.127]    [Pg.18]    [Pg.335]    [Pg.133]    [Pg.193]    [Pg.111]    [Pg.132]    [Pg.133]    [Pg.400]    [Pg.213]    [Pg.777]    [Pg.1038]    [Pg.139]    [Pg.160]    [Pg.353]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Copper ligands

Copper salts

© 2024 chempedia.info