Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Divalent copper

Figure 16 shows characteristic kinetic and potential cxirves describing the behavior of a catalytic solution containing mixed chloro-bromoacetate complexes of divalent palladium, monovalent copper, divalent copper, divalent iron, and trivalent iron in the oxidation of... [Pg.407]

Certain salts of divalent metals (e.g., lead and copper formate, calcium acetate) are exceptional in giving bright green fluorescences. In each case confirmatory tests must always be employed. [Pg.351]

Copper quinolinolate (oxine copper) is the chelate of divalent copper and 8-hydroxyquinoline and shares most of its market with copper naphthenate, which is a complex copper salt of mixed naphthenic acids. The principal uses are in wood treatments and some military textiles, where the green color is not objectionable. Copper naphthenate has an odor but is cheaper than oxine. Both copper naphthenate and 2inc naphthenate have performed well in environment tests, with exposure to soil above-ground, as well as concrete (33). [Pg.98]

Divalent copper, cobalt, nickel, and vanadyl ions promote chemiluminescence from the luminol—hydrogen peroxide reaction, which can be used to determine these metals to concentrations of 1—10 ppb (272,273). The light intensity is generally linear with metal concentration of 10 to 10 M range (272). Manganese(II) can also be determined when an amine is added to increase its reduction potential by stabili2ing Mn (ITT) (272). Since all of these ions are active, ion exchange must be used for deterrnination of a particular metal in mixtures (274). [Pg.274]

Bases of low polarizabiUty such as fluoride and the oxygen donors are termed hard bases. The corresponding class a cations are called hard acids the class b acids and the polarizable bases are termed soft acids and soft bases, respectively. The general rule that hard prefers hard and soft prefers soft prevails. A classification is given in Table 3. Whereas the divisions are arbitrary, the trends are important. Attempts to provide quantitative gradations of "hardness and softness" have appeared (14). Another generaUty is the usual increase in stabiUty constants for divalent 3t5 ions that occurs across the row of the Periodic Table through copper and then decreases for zinc (15). [Pg.168]

NE is unstable in light and air, especially at neutral and alkaline pH. Oxidation to noradrenochrome occurs in the presence of oxygen and such divalent metal ions as copper, manganese, and nickel. [Pg.355]

Resins currently available exhibit a range of selectivity s and thus have broad application. As an example, for a strong acid resin, the relative preference for divalent calcium ions (Ca ) over divalent copper ions (Cu ) is approximately 1.5... [Pg.393]

A rather rare perfluoroalkyl iodide addition to divalent carbon atom has been performed in the case of isocyanides under thermal or copper catalyzed conditions [14I (equation 122)... [Pg.479]

In this review an attempt is made to discuss all the important interactions of highly reactive divalent carbon derivatives (carbenes, methylenes) and heterocyclic compounds and the accompanying molecular rearrangements. The most widely studied reactions have been those of dihalocarbenes, particularly dichlorocarbene, and the a-ketocarbenes obtained by photolytic or copper-catalyzed decomposition of diazo compounds such as diazoacetic ester or diazoacetone. The reactions of diazomethane with heterocyclic compounds have already been reviewed in this series. ... [Pg.57]

A carbene, R2C , is a neutral molecule containing a divalent carbon with only six valence electrons. Carbenes are highly reactive toward alkenes, adding to give cyclopropanes. Nonlialogenated cyclopropanes are best prepared by treatment of the alkene with CH212 and zinc-copper, a process called the Simmons-Smith reaction. [Pg.246]

The effect of the nature of the divalent cation is very pronounced as illustrated in Figure 2 on sample A30. Pectins were found to be much more sensitive to copper than to calcium. A scale of affinity towards divalent cations can be easily obtained this way [18]. This result corroborates what has been measured by pH titration upon addition of increasing amount of cations [28,29], where the order of decreasing selectivity was Pb = Cu Zn > Cd = Ni > Ca. This scale does not follow the size of the radius of the cations but is in agreement with the sequence of complex stability of Irving-Williams [30]. [Pg.39]

Certain oxides of divalent metals, those of ZnO, CuO, SnO, HgO, and PbO, form cements that are hydrolytically stable in addition MgO, CaO, BaO and SrO form cements that are softened when exposed to water. Compressive strengths of these materials range from 26 to 83 MPa, the strongest being the copper(II) and zinc polyacrylate cements (Table 5.1). Crisp, Prosser Wilson (1976) found that for divalent oxides the rate of reaction increased in the order... [Pg.102]

Several copper minerals, containing copper in the divalent state, are completely soluble in sulfuric acid according to the following reactions ... [Pg.568]

The other advantages which sulfuric acid has as an inert electrolyte are (i) it increases the conductance of the bath (ii) it is inexpensive (iii) it strongly inhibits the hydrolysis of cuprous sulfate (iv) it is nonvolatile and may be used at high concentrations and temperatures and (v) it does not attack lead, so that it is possible to use this metal for plant construction. The only inconvenience of sulfuric acid is that copper dissolves in it essentially as the divalent ion this means that the current consumption is double of that which would be consumed if the electrolysis were to be carried out in an electrolyte solution containing Cu+ ions. Attempts to implement this alternative have not been very successful so that the use of sulfuric acid is yet to be challenged. [Pg.718]

Triphenylformazan behaves as a bidentate ligand forming 2 1 complexes (217) with divalent copper, nickel, and cobalt.377 Formazan metal complexes can be compared to complexes of azo dyes or beta diketones due to structural similarity.301,302 In general, formazan metal complexes have low stability toward acids. However, when electron-donating substituents are added to the aromatic ring, a considerable enhancement in stability is observed. Cationic complexes of type 218 are also known. The complexation of formazan with metal cation can be accompanied by oxidation to the tetrazolium salt and the formation of a complex... [Pg.268]

Divalent Co substitution in copper amine oxidase revealed 19% of the native specific activity (for MeNH2) and 75% of the native reactivity toward phenylhydrazine. The major cause of this was a 68-fold increase in Km for 02. These investigations support the idea that electrons flow directly to bound 02 without the need for a prior metal reduction and that the Cu does not redox cycle but simply provides electrostatic stabilization during reduction of 02 to 02-. 1211... [Pg.109]

Copper also binds very strongly as an inner-sphere complex with organic matter while other divalent transition metals such as Ni2+ and Co2+... [Pg.164]

Figure 8.3 A model of iron transport across the intestine. Reduction of ferric complexes to the ferrous form is achieved by the action of the brush border ferric reductase. The ferrous form is transported across the brush border membrane by the proton-coupled divalent cation transporter (DCT1) where it enters an unknown compartment in the cytosol. Ferrous iron is then transported across the basolateral membrane by IREG1, where the membrane-bound copper oxidase hephaestin (Hp) promotes release and binding of Fe3+ to circulating apotransferrin. Except for hephaestin the number of transmembrane domains for each protein is not shown in full. Reprinted from McKie et al., 2000. Copyright (2000), with permission from Elsevier Science. Figure 8.3 A model of iron transport across the intestine. Reduction of ferric complexes to the ferrous form is achieved by the action of the brush border ferric reductase. The ferrous form is transported across the brush border membrane by the proton-coupled divalent cation transporter (DCT1) where it enters an unknown compartment in the cytosol. Ferrous iron is then transported across the basolateral membrane by IREG1, where the membrane-bound copper oxidase hephaestin (Hp) promotes release and binding of Fe3+ to circulating apotransferrin. Except for hephaestin the number of transmembrane domains for each protein is not shown in full. Reprinted from McKie et al., 2000. Copyright (2000), with permission from Elsevier Science.
In mammals, as in yeast, several different metallothionein isoforms are known, each with a particular tissue distribution (Vasak and Hasler, 2000). Their synthesis is regulated at the level of transcription not only by copper (as well as the other divalent metal ions cadmium, mercury and zinc) but also by hormones, notably steroid hormones, that affect cellular differentiation. Intracellular copper accumulates in metallothionein in copper overload diseases, such as Wilson s disease, forming two distinct molecular forms one with 12 Cu(I) equivalents bound, in which all 20 thiolate ligands of the protein participate in metal binding the other with eight Cu(I)/ metallothionein a molecules, with between 12-14 cysteines involved in Cu(I) coordination (Pountney et ah, 1994). Although the role of specific metallothionein isoforms in zinc homeostasis and apoptosis is established, its primary function in copper metabolism remains enigmatic (Vasak and Hasler, 2000). [Pg.329]


See other pages where Divalent copper is mentioned: [Pg.310]    [Pg.310]    [Pg.75]    [Pg.408]    [Pg.310]    [Pg.310]    [Pg.75]    [Pg.408]    [Pg.63]    [Pg.435]    [Pg.429]    [Pg.226]    [Pg.676]    [Pg.4]    [Pg.877]    [Pg.168]    [Pg.413]    [Pg.183]    [Pg.717]    [Pg.107]    [Pg.255]    [Pg.326]    [Pg.135]    [Pg.136]    [Pg.331]    [Pg.66]    [Pg.292]    [Pg.789]    [Pg.323]    [Pg.324]    [Pg.165]    [Pg.175]    [Pg.332]   
See also in sourсe #XX -- [ Pg.911 ]

See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Divalent

Divalents

© 2024 chempedia.info