Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper reductases electron transfer

Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase). Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase).
It is interesting to speculate why nitrite reductase has its type I coppers in domains 1, whereas in hCP the mononuclear copper binding sites are retained in the domains 2,4, and 6 where they are comparatively buried in the protein. One possible reason can be related to the difference in functions of the two proteins. NR has to interact with a relatively large pseudo-azurin macromolecule in order for electron transfer to take place,... [Pg.74]

Several copper enzymes will be discussed in detail in subsequent sections of this chapter. Information about major classes of copper enzymes, most of which will not be discussed, is collected in Table 5.1 as adapted from Chapter 14 of reference 49. Table 1 of reference 4 describes additional copper proteins such as the blue copper electron transfer proteins stellacyanin, amicyanin, auracyanin, rusticyanin, and so on. Nitrite reductase contains both normal and blue copper enzymes and facilitates the important biological reaction NO) — NO. Solomon s Chemical Reviews article4 contains extensive information on ligand field theory in relation to ground-state electronic properties of copper complexes and the application of... [Pg.189]

The NO/NO+ and NO/NO- self-exchange rates are quite slow (42). Therefore, the kinetics of nitric oxide electron transfer reactions are strongly affected by transition metal complexes, particularly by those that are labile and redox active which can serve to promote these reactions. Although iron is the most important metal target for nitric oxide in mammalian biology, other metal centers might also react with NO. For example, both cobalt (in the form of cobalamin) (43,44) and copper (in the form of different types of copper proteins) (45) have been identified as potential NO targets. In addition, a substantial fraction of the bacterial nitrite reductases (which catalyze reduction of NO2 to NO) are copper enzymes (46). The interactions of NO with such metal centers continue to be rich for further exploration. [Pg.220]

Copper-deficient cells of Ps. perfectomarinus give N20 rather than dinitrogen from nitrite. This has led to the interesting suggestion that the dinitrogen monoxide reductase is a copper protein,15361537 but it appears that the properties of the copper protein differ from those of the dinitrogen monoxide reductase.1538 The copper protein may well lie on the electron-transfer pathway to the N20 reductase. [Pg.727]

This type of active site is also known as a mixed-valence copper site. Similarly to the type 3 site, it contains a dinuclear copper core, but both copper ions have a formal oxidation state of +1.5 in the oxidized form. This site exhibits a characteristic seven-line pattern in the EPR spectra and is purple colored. Both copper ions have a tetrahedral geometry and are bridged by two sulfur atoms of two cysteinyl residues. Each copper ion is also coordinated by a nitrogen atom from a histidine residue. The function of this site is long-range electron transfer, and it can be found, for example, in cytochrome c oxidase [12-14], and nitrous oxide reductase (Figure 5.1 e). [Pg.104]

The constrained nature of the copper center in BCB domains reduces its reorganization energy, which is considered an important feature for their function in long-range electron transfer processes. They are capable of tunneling electrons, usually over 10- to 12-A distances, intramolecu-larly within the same protein (in the case of multicopper oxidases and nitrite reductases) or intermolecularly between a donor and an acceptor protein (in the case of cupredoxins) in a thermodynamically favorable environment. [Pg.286]

Figure 14 Similarity between the putative electron-transfer routes to and from the type 1 copper sites in plastocyanin and nitrite reductase. (Reproduced with permission of Chapman and Hall from J. Sanders-Loehr, in Bioinorganic Chemistry of Copper , ed. K.D. Karlin and Z. Tyeklar, 1993, p. 51) ... Figure 14 Similarity between the putative electron-transfer routes to and from the type 1 copper sites in plastocyanin and nitrite reductase. (Reproduced with permission of Chapman and Hall from J. Sanders-Loehr, in Bioinorganic Chemistry of Copper , ed. K.D. Karlin and Z. Tyeklar, 1993, p. 51) ...
This is a remarkable reaction because the transition metal chemistry of N2O is sparse, especially with copper. Most N2O reductases are soluble, periplasmic homodimers however, there are examples of membrane-associated enzymes. " The best characterized N2O reductases are from Paracoccus denitrificans, Pseudomonas nautica, and Pseudomonas stutzeri, and most of the information presented here is derived from experiments on these enzymes. Where comparable data are available, N2O reductases from various organisms appear to be fairly similar, with the exception of the enzyme from Wolinella succinogenes, as noted above. The crystal stractmes of N2O reductase from P. nautica and more recently from P. denitrificans show two distinct copper clusters per subunit a bis-thiolate bridged dinuclear electron-transfer site (Cua), which is analogous to the Cua site in cytochrome c oxidase see Cyanide Complexes of the Transition Metals), and a novel four-copper cluster ligated by seven histidines, the catalytic copper site (Cuz), where N2O is thought to bind and be reduced. Cuz was proposed to be a copper-histidine cluster on the basis of the presence of nine strictly conserved histidine residues, and this was supported by a H NMR study that identified two non-CuA associated resonances that were assigned as copper-histidine N-H protons. ... [Pg.5822]

The electron carriers in the respiratory assembly of the inner mitochondrial membrane are quinones, flavins, iron-sulfur complexes, heme groups of cytochromes, and copper ions. Electrons from NADH are transferred to the FMN prosthetic group of NADH-Q oxidoreductase (Complex I), the first of four complexes. This oxidoreductase also contains Fe-S centers. The electrons emerge in QH2, the reduced form of ubiquinone (Q). The citric acid cycle enzyme succinate dehydrogenase is a component of the succinate-Q reductase complex (Complex II), which donates electrons from FADH2 to Q to form QH2.This highly mobile hydrophobic carrier transfers its electrons to Q-cytochrome c oxidoreductase (Complex III), a complex that contains cytochromes h and c j and an Fe-S center. This complex reduces cytochrome c, a water-soluble peripheral membrane protein. Cytochrome c, like Q, is a mobile carrier of electrons, which it then transfers to cytochrome c oxidase (Complex IV). This complex contains cytochromes a and a 3 and three copper ions. A heme iron ion and a copper ion in this oxidase transfer electrons to O2, the ultimate acceptor, to form H2O. [Pg.777]


See other pages where Copper reductases electron transfer is mentioned: [Pg.40]    [Pg.319]    [Pg.103]    [Pg.298]    [Pg.135]    [Pg.261]    [Pg.193]    [Pg.197]    [Pg.39]    [Pg.243]    [Pg.252]    [Pg.129]    [Pg.454]    [Pg.185]    [Pg.126]    [Pg.126]    [Pg.57]    [Pg.290]    [Pg.298]    [Pg.298]    [Pg.329]    [Pg.139]    [Pg.956]    [Pg.1016]    [Pg.1035]    [Pg.1037]    [Pg.6220]    [Pg.6352]    [Pg.368]    [Pg.755]    [Pg.819]    [Pg.2505]    [Pg.2531]   
See also in sourсe #XX -- [ Pg.8 , Pg.44 ]




SEARCH



Copper electron transfer

Copper reductases

Copper-nitrite reductase, electron transfer

Reductases, copper proteins, electron transfer

© 2024 chempedia.info