Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper reactivation

The TPR results show that copper reactivity toward reduction in these catalysts depends on the nature of Cu species, CuO particle size and Cu-Zn interaction. [Pg.537]

Severity Level Copper Reactivity (A first month exposure) Explanation of Severity Level... [Pg.756]

Classification according to copper corrosion is used because it is used widely in electronics. Also, copper provides a good representation of how many metals behave in environments. Several reports describe the use of copper where coupons are exposed for at least one month (three to twelve months for low levels of corrosivity) and the amount of corrosion product is determined by weight gain or cathodic reduction, or both 17-20]. Table 4 gives a classification of corrosivity according to copper reactivity as described in ANSI/ISA-SP71. [Pg.756]

Using the electron transfer definition, many more reactions can be identified as redox (reduction-oxidation) reactions. An example is the displacement of a metal from its salt by a more reactive metal. Consider the reaction between zinc and a solution of copper(If) sulphate, which can be represented by the equation... [Pg.93]

Despite its electrode potential (p. 98), very pure zinc has little or no reaction with dilute acids. If impurities are present, local electrochemical cells are set up (cf the rusting of iron. p. 398) and the zinc reacts readily evolving hydrogen. Amalgamation of zinc with mercury reduces the reactivity by giving uniformity to the surface. Very pure zinc reacts readily with dilute acids if previously coated with copper by adding copper(II) sulphate ... [Pg.417]

The metal is slowly oxidised by air at its boiling point, to give red mercury(II) oxide it is attacked by the halogens (which cannoi therefore be collected over mercury) and by nitric acid. (The reactivity of mercury towards acids is further considered on pp. 436, 438.) It forms amalgams—liquid or solid—with many other metals these find uses as reducing agents (for example with sodium, zinc) and as dental fillings (for example with silver, tin or copper). [Pg.435]

A halogen atom directly attached to a benzene ring is usually unreactive, unless it is activated by the nature and position of certain other substituent groups. It has been show n by Ullmann, however, that halogen atoms normally of low reactivity will condense with aromatic amines in the presence of an alkali carbonate (to absorb the hydrogen halide formed) and a trace of copper powder or oxide to act as a catalyst. This reaction, known as the Ullmant Condensation, is frequently used to prepare substituted diphenylamines it is exemplified... [Pg.217]

Interestingly, the rate constants for Diels-Alder reaction of the ternary complexes with 3.9 are remarkably similar. Only with 2,2 -bipyridine and 1,10-phenanthroline as ligands, a significant change in reactivity is observed. It might well be that the inability of these complexes to adopt a planar geometry hampers the interaction between the copper ion and the dienophile, resulting in a decrease of the rate of the catalysed Diels-Alder reaction. [Pg.84]

Alkynyl anions are more stable = 22) than the more saturated alkyl or alkenyl anions (p/Tj = 40-45). They may be obtained directly from terminal acetylenes by treatment with strong base, e.g. sodium amide (pA, of NH 35). Frequently magnesium acetylides are made in proton-metal exchange reactions with more reactive Grignard reagents. Copper and mercury acetylides are formed directly from the corresponding metal acetates and acetylenes under neutral conditions (G.E. Coates, 1977 R.P. Houghton, 1979). [Pg.5]

Common catalyst compositions contain oxides or ionic forms of platinum, nickel, copper, cobalt, or palladium which are often present as mixtures of more than one metal. Metal hydrides, such as lithium aluminum hydride [16853-85-3] or sodium borohydride [16940-66-2] can also be used to reduce aldehydes. Depending on additional functionahties that may be present in the aldehyde molecule, specialized reducing reagents such as trimethoxyalurninum hydride or alkylboranes (less reactive and more selective) may be used. Other less industrially significant reduction procedures such as the Clemmensen reduction or the modified Wolff-Kishner reduction exist as well. [Pg.470]

The dehydrogenation of 2-butanol is conducted in a multitube vapor-phase reactor over a zinc oxide (20—23), copper (24—27), or brass (28) catalyst, at temperatures of 250—400°C, and pressures slightly above atmospheric. The reaction is endothermic and heat is suppHed from a heat-transfer fluid on the shell side of the reactor. A typical process flow sheet is shown in Figure 1 (29). Catalyst life is three to five years operating in three to six month cycles between oxidative reactivations (30). Catalyst life is impaired by exposure to water, butene oligomers, and di-j -butyl ether (27). [Pg.489]

The use of sofid supports in conjunction with permanganate reactions leads to modification of the reactivity and selectivity of the oxidant. The use of an inert support, such as bentonite (see Clays), copper sulfate pentahydrate, molecular sieves (qv) (151), or sifica, results in an oxidant that does not react with alkenes, but can be used, for example, to convert alcohols to ketones (152). A sofid supported permanganate reagent, composed of copper sulfate pentahydrate and potassium permanganate (153), has been shown to readily convert secondary alcohols into ketones under mild conditions, and in contrast to traditional permanganate reactivity, the reagent does not react with double bonds (154). [Pg.522]

The oxidative dehydration of isobutyric acid [79-31-2] to methacrylic acid is most often carried out over iron—phosphoms or molybdenum—phosphoms based catalysts similar to those used in the oxidation of methacrolein to methacrylic acid. Conversions in excess of 95% and selectivity to methacrylic acid of 75—85% have been attained, resulting in single-pass yields of nearly 80%. The use of cesium-, copper-, and vanadium-doped catalysts are reported to be beneficial (96), as is the use of cesium in conjunction with quinoline (97). Generally the iron—phosphoms catalysts require temperatures in the vicinity of 400°C, in contrast to the molybdenum-based catalysts that exhibit comparable reactivity at 300°C (98). [Pg.252]

Approximately 90% of the phthalocyanines (predominantly copper phthalocyanine) are used as pigments (qv). In addition, they have found acceptance in many types of dyestuffs, eg, direct and reactive dyes, water-soluble and solvent-soluble dyes with physical and chemical binding, a2o-reactive dyes, a2o nonreactive dyes, sulfur dyes, and vat dyes (1) (see Dyes Dyes, reactive). [Pg.506]

Phthalocyanine Dyes. In addition to their use as pigments, the phthalocyanines have found widespread appHcation as dyestuffs, eg, direct and reactive dyes, water-soluble dyes with physical or chemical binding, solvent-soluble dyes with physical or chemical binding, a2o reactive dyes, a2o nonreactive dyes, sulfur dyes, and wet dyes. The first phthalocyanine dyes were used in the early 1930s to dye textiles like cotton (qv). The water-soluble forms Hke sodium salts of copper phthalocyanine disulfonic acid. Direct Blue 86 [1330-38-7] (Cl 74180), Direct Blue 87 [1330-39-8] (Cl 74200), Acid Blue 249 [36485-85-5] (Cl 74220), and their derivatives are used to dye natural and synthetic textiles (qv), paper, and leather (qv). The sodium salt of cobalt phthalocyanine, ie. Vat Blue 29 [1328-50-3] (Cl 74140) is mostly appHed to ceUulose fibers (qv). [Pg.506]

The alkan olamines discussed here exhibit the chemical reactivity of both amines and alcohols, as is the case with other alkan olamines. Typically, they attack copper, brass, and aluminum, but not steel or iron. Alkan olamines are useful as amination agents however, the reactivity of both the amino and alcohol... [Pg.16]

Vanadium is resistant to attack by hydrochloric or dilute sulfuric acid and to alkali solutions. It is also quite resistant to corrosion by seawater but is reactive toward nitric, hydrofluoric, or concentrated sulfuric acids. Galvanic corrosion tests mn in simulated seawater indicate that vanadium is anodic with respect to stainless steel and copper but cathodic to aluminum and magnesium. Vanadium exhibits corrosion resistance to Hquid metals, eg, bismuth and low oxygen sodium. [Pg.382]

Copper, aluminum, and their alloys should not be used in handling vinyhdene chloride. Copper can react with acetylenic impurities to form copper acetyhdes, whereas aluminum can react with the vinyhdene chloride to form aluminum chloralkyls. Both compounds are extremely reactive and potentially ha2ardous. [Pg.428]

The reactive species that iaitiate free-radical oxidatioa are preseat ia trace amouats. Exteasive studies (11) of the autoxidatioa mechanism have clearly estabUshed that the most reactive materials are thiols and disulfides, heterocycHc nitrogen compounds, diolefins, furans, and certain aromatic-olefin compounds. Because free-radical formation is accelerated by metal ions of copper, cobalt, and even iron (12), the presence of metals further compHcates the control of oxidation. It is difficult to avoid some metals, particularly iron, ia fuel systems. [Pg.414]


See other pages where Copper reactivation is mentioned: [Pg.600]    [Pg.92]    [Pg.756]    [Pg.113]    [Pg.600]    [Pg.92]    [Pg.756]    [Pg.113]    [Pg.178]    [Pg.284]    [Pg.2902]    [Pg.174]    [Pg.94]    [Pg.448]    [Pg.425]    [Pg.25]    [Pg.139]    [Pg.169]    [Pg.56]    [Pg.80]    [Pg.266]    [Pg.297]    [Pg.348]    [Pg.506]    [Pg.26]    [Pg.5]    [Pg.519]    [Pg.216]    [Pg.459]    [Pg.265]    [Pg.348]    [Pg.396]    [Pg.473]   
See also in sourсe #XX -- [ Pg.324 ]




SEARCH



© 2024 chempedia.info