Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper ions catalysts

The reaction with ammonia or amines, which undoubtedly proceeds by the SnAt mechanism, is catalyzed by copper and nickel salts, though these are normally used only with rather unreactive halides. This reaction, with phase-transfer catalysis, has been used to synthesize triarylamines. Copper ion catalysts (especially cuprous oxide or iodide) also permit the Gabriel synthesis (10-61) to be... [Pg.864]

The flow-cell design was introduced by Stieg and Nieman [166] in 1978 for analytical uses of CL. Burguera and Townshend [167] used the CL emission produced by the oxidation of alkylamines by benzoyl peroxide to determine aliphatic secondary and tertiary amines in chloroform or acetone. They tested various coiled flow cells for monitoring the CL emission produced by the cobalt-catalyzed oxidation of luminol by hydrogen peroxide and the fluorescein-sensitized oxidation of sulfide by sodium hypochlorite [168], Rule and Seitz [169] reported one of the first applications of flow injection analysis (FTA) in the CL detection of peroxide with luminol in the presence of a copper ion catalyst. They... [Pg.28]

SPILL CLEAN-UP use water spray to cool and disperse vapors dilute spills to form nonflammable mixtures use activated carbon and copper ion catalysts to remove hydrazine from wastewater remove all sources of ignition. [Pg.125]

Copper is clearly the most selective metal-ion catalyst. Interestingly, proton catalysis also leads to high selectivities. This is a strong indication that selectivity in this catalysed Diels-Alder reaction does not result from steric interactions. [Pg.62]

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

Mechanistically, these diazonio replacement reactions occur through radical rather than polar pathways. In the presence of a copper(I) compound, for instance, it s thought that the arenediazonium ion is first converted to an aryl radical plus copper(II), followed by subsequent reaction to give product plus regenerated copper(l) catalyst. [Pg.943]

Similarly, when catalyzed the reaction rate decreases significantly as a function of pH level. The optimum reaction pH level is approximately 9.5 to 10.5. Iron, and especially copper, in the boiler may act as adventitious catalysts. However, as metal transport polymers are frequently employed, iron, copper, or cobalt may be transported away from contact with sulfite, and thus are not available for catalysis. (This may be a serious problem in high-pressure units employing combinations of organic oxygen scavengers and metal ion catalysts.)... [Pg.485]

Copper salts such as CuS04 are potent catalysts of the oxidative modification of LDL in vitro (Esterbauer et al., 1990), although more than 95% of the copper in human serum is bound to caeruloplasmin. Cp is an acute-phase protein and a potent inhibitor of lipid peroxidation, but is susceptible to both proteolytic and oxidative attack with the consequent release of catalytic copper ions capable of inducing lipid peroxidation (Winyard and... [Pg.106]

Iwamoto, M., Mizuno, N. and Yahiro, H. (1991) Removal of nitrogen monoxide over copper ion-exchanged zeolite catalysts, Sekiyu Gakkaishi, 34, 375. [Pg.138]

Ishihara, T., Kagawa, M., Hadama, F. et al. (1997) Copper ion-exchanged SAPO-34 as a thermostable catalyst for selective reduction of NO with C3H6, J. Catal., 169, 93. [Pg.140]

Monterra, C., Gianello, E., Cerrato, G. et al. (1998) Role of surface hydration state on the nature and reactivity of copper ions in Cu-Zr02 catalysts N20 decomposition, J. Catal. 179, 111. [Pg.319]

A still more complicated reaction is the chemiluminescent oxidation of sodium hydrogen sulfide, cysteine, and gluthathione by oxygen in the presence of heavy metal catalysts, especially copper ions 60>. When copper is used in the form of the tetrammin complex Cu(NH3) +, the chemiluminescence is due to excited-singlet oxygen when the catalyst is copper flavin mononucleotide (Cu—FMN), additional emission occurs from excited flavin mononucleotide. From absorption spectroscopic measurements J. Stauff and F. Nimmerfall60> concluded that the first reaction step consists in the addition of oxygen to the copper complex ... [Pg.79]

A question which has occupied many catalytic scientists is whether the active site in methanol synthesis consists exclusively of reduced copper atoms or contains copper ions [57,58]. The results of Szanyi and Goodman suggest that ions may be involved, as the preoxidized surface is more active than the initially reduced one. However, the activity of these single crystal surfaces expressed in turn over frequencies (i.e. the activity per Cu atom at the surface) is a few orders of magnitude lower than those of the commercial Cu/ZnO/ALO catalyst, indicating that support-induced effects play a role. Stabilization of ionic copper sites is a likely possibility. Returning to Auger spectroscopy, Fig. 3.26 illustrates how many surface scientists use the technique in a qualitative way to monitor the surface composition. [Pg.89]

Protection of the enzyme by a copper ion complexing agent (EDTA) to avoid inhibition by traces of copper ions from the copper catalyst. [Pg.282]


See other pages where Copper ions catalysts is mentioned: [Pg.928]    [Pg.1028]    [Pg.715]    [Pg.799]    [Pg.924]    [Pg.1114]    [Pg.928]    [Pg.1028]    [Pg.715]    [Pg.799]    [Pg.924]    [Pg.1114]    [Pg.87]    [Pg.446]    [Pg.343]    [Pg.229]    [Pg.72]    [Pg.168]    [Pg.7]    [Pg.116]    [Pg.456]    [Pg.183]    [Pg.187]    [Pg.510]    [Pg.305]    [Pg.429]    [Pg.184]    [Pg.71]    [Pg.88]    [Pg.237]    [Pg.228]    [Pg.836]    [Pg.130]    [Pg.416]    [Pg.205]    [Pg.206]    [Pg.222]   


SEARCH



Copper catalyst

Copper ion

© 2024 chempedia.info