Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper impurity, removal

Lithium is used in metallurgical operations for degassing and impurity removal (see Metallurgy). In copper (qv) refining, lithium metal reacts with hydrogen to form lithium hydride which subsequendy reacts, along with further lithium metal, with cuprous oxide to form copper and lithium hydroxide and lithium oxide. The lithium salts are then removed from the surface of the molten copper. [Pg.224]

Precipitation can also occur upon chemical reaction between the impurity and a precipitating agent to form a compound insoluble in the molten metal. The refining of cmde lead is an example of this process. Most copper is removed as a copper dross upon cooling of the molten metal, but the removal of the residual copper is achieved by adding sulfur to precipitate copper sulfide. The precious metals are separated by adding zinc to Hquid lead to form soHd intermetaHic compounds of zinc with gold and silver (Parkes process). The precious metals can then be recovered by further treatment (see Lead). [Pg.169]

Fite refining adjusts the sulfur and oxygen levels in the bhster copper and removes impurities as slag or volatile products. The fire-refined copper is sold for fabrication into end products, provided that the chemistry permits product specifications to be met. Some impurities, such as selenium and nickel, are not sufficiently removed by fire refining. If these impurities are detrimental to fabrication or end use, the copper must be electrorefined. Other impurities, such as gold, silver, selenium, and tellurium, are only recovered via electrorefining. Virtually all copper is electrorefined. [Pg.201]

The conversion process for the copper matte removes iron, sulfur and other impurities from matte, thereby yielding liquid metallic copper of about 99% purity (blister copper). The slags which come out of converters contain from 2 to 15% copper and must go through treatment for copper recovery, usually by froth flotation of the copper from solidified and slowly cooled slag. [Pg.355]

Ores not containing sulphur,- such as the oxide and carbonate, are reduced with coke in a blast furnace. The impurities associated with native copper are removed by slagging in a reverberatory furnace. [Pg.246]

Polyethylene glycol in the synthesis of materials. PEG has been used as a solvent in polymerization reactions. It was found to facilitate easy removal of the metal catalyst in transition metal mediated living radical polymerization (Figure 8.10). Products from this type of polymerization are usually heavily contaminated with intensely coloured copper impurities. In the case of methyl methacrylate polymerization the reaction rate was higher than in conventional organic solvents, but for styrene the reaction was slower than in xylene. [Pg.181]

Many hydrometallurgical processes or process steps are used to upgrade concentrates, process recycled scrap metal, or purify aqueous process steams. Examples are (I) the leaching of molybdenite concentrate to remove Knpurities ,ft (2) leaching of tungsten carbide and molybdenum scrap-, (3) removal of copper impurities in nickel anolyte by cementation on metallic ruckel and (4) various methods for treating nuclear fuel elements. [Pg.503]

Crude lead contains traces of a number of metals. The desilvering of lead is considered later under silver (Chapter 14). Other metallic impurities are removed by remelting under controlled conditions when arsenic and antimony form a scum of lead(II) arsenate and antimonate on the surface while copper forms an infusible alloy which also takes up any sulphur, and also appears on the surface. The removal of bismuth, a valuable by-product, from lead is accomplished by making the crude lead the anode in an electrolytic bath consisting of a solution of lead in fluorosilicic acid. Gelatin is added so that a smooth coherent deposit of lead is obtained on the pure lead cathode when the current is passed. The impurities here (i.e. all other metals) form a sludge in the electrolytic bath and are not deposited on the cathode. [Pg.168]

In both the sulfuric and nitric acid processes, the dorn metal must be in shot form prior to treatment to secure a reasonably rapid reaction. A number of steps also may be required in processing the dorne metal to remove miscellaneous impurities, particularly in treating material from copper-anode slime (31). [Pg.379]

Copper is frequently a main impurity ia blast-furnace charges, and its limited solubiUty ia molten lead as copper sulfide requires that the excess be removed by chemical reaction with components of the charge. For this reason enough sulfur is left ia the siater to form a copper sulfide matte layer having a specific gravity of 5.2. [Pg.36]

Dressing. The impure lead bulhon, produced from any of the smelting processes, is cooled to remove dissolved copper prior to the refining operation. The operation is referred to as copper drossing, and is performed in one or two 250 t cast-iron ketdes. The process consists of skimming off the dross, stirring the lead, and reskimming. [Pg.41]

Pemoval of Other Impurities. After softening, the impurities that may stiU remain in the lead are silver, gold, copper, tellurium, platinum metals, and bismuth. Whereas concentrations may be tolerable for some lead appHcations, the market values encourage separation and recovery. The Parkes process is used for removing noble metals and any residual copper, and the KroU-Betterton process for debismuthizing. [Pg.45]

Impurities can be removed by formation of a gaseous compound, as in the fire-refining of copper (qv). Sulfur is removed from the molten metal by oxidation with air and evolution of sulfur dioxide. Oxygen is then removed by reduction with C, CO, in the form of natural gas, reformed... [Pg.169]

Precipita.tlon, In the simplest case, the solubihty of an impurity in the Hquid metal changes with temperature. Thus the impurity may precipitate as a sohd phase upon cooling. For instance, the removal of iron from tin and of copper from lead are achieved by precipitation. When the soHd is lighter than the Hquid, it floats as a dross on the surface of the melt where it is easily removed by scraping. The process is called dressing. [Pg.169]

Cementation is also an efficient way of putifyiag a pregnant solution by removing impurities that are more noble than the metal being processed. An example is the cementation of copper, cadmium, cobalt, and nickel from ziac solutions prior to electrowinning. [Pg.171]

Metals less noble than copper, such as iron, nickel, and lead, dissolve from the anode. The lead precipitates as lead sulfate in the slimes. Other impurities such as arsenic, antimony, and bismuth remain partiy as insoluble compounds in the slimes and partiy as soluble complexes in the electrolyte. Precious metals, such as gold and silver, remain as metals in the anode slimes. The bulk of the slimes consist of particles of copper falling from the anode, and insoluble sulfides, selenides, or teUurides. These slimes are processed further for the recovery of the various constituents. Metals less noble than copper do not deposit but accumulate in solution. This requires periodic purification of the electrolyte to remove nickel sulfate, arsenic, and other impurities. [Pg.176]

The extent of purification depends on the use requirements. Generally, either intense aqueous extractive distillation, or post-treatment by fixed-bed absorption (qv) using activated carbon, molecular sieves (qv), and certain metals on carriers, is employed to improve odor and to remove minor impurities. Essence grade is produced by final distillation in nonferrous, eg, copper, equipment (66). [Pg.108]


See other pages where Copper impurity, removal is mentioned: [Pg.386]    [Pg.198]    [Pg.203]    [Pg.20]    [Pg.147]    [Pg.386]    [Pg.713]    [Pg.150]    [Pg.1693]    [Pg.7]    [Pg.318]    [Pg.1687]    [Pg.474]    [Pg.775]    [Pg.136]    [Pg.622]    [Pg.361]    [Pg.1012]    [Pg.51]    [Pg.446]    [Pg.379]    [Pg.304]    [Pg.481]    [Pg.387]    [Pg.133]    [Pg.167]    [Pg.169]    [Pg.174]    [Pg.175]    [Pg.3]    [Pg.560]    [Pg.561]   
See also in sourсe #XX -- [ Pg.357 , Pg.362 ]

See also in sourсe #XX -- [ Pg.357 , Pg.362 ]




SEARCH



Copper impurity

Copper removal

Impurities removal

© 2024 chempedia.info