Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper compounds catalysts

Wheeler, I. (1979). Copper phthalocyanine pigment production— by reacting compound forming phthalocyanine ring system, benzophenone-tetracarboxylic acid, copper compound, catalyst and nitrogen source. Ciba-Geigy Patent GB 1 544 171. [266, 267]... [Pg.394]

That looks great, Spiceboy. Thanks. Bra And to show you that Spiceboy isn t making this up, the following experimental will prove it. This was taken from the review [13] written by the same doctor that authored the progenitor PdCb article that Strike drew from to formulate this recipe, And just as Spiceboy says above, there is no need for any copper compound or balloon. Also, the reaction time is seriously shorter and the amount of PdCI2 catalyst needed is drastically reduced ... [Pg.73]

Stibonium Ylids and Related Compounds. In contrast to phosphoms and arsenic, only a few antimony yhds have been prepared. Until quite recendy triphenyl stibonium tetraphenylcyclopentadienyUde [15081 -36-4] C H Sb, was the only antimony yUd that had been isolated and adequately characteri2ed (192). A new method, uti1i2ing an organic copper compound as a catalyst, has resulted ia the synthesis of a number of new antimony yhds (193) ... [Pg.210]

The oxidation reaction between butadiene and oxygen and water in the presence of CO2 or SO2 produces 1,4-butenediol. The catalysts consist of iron acetylacetonate and LiOH (99). The same reaction was also observed at 90°C with Group (VIII) transition metals such as Pd in the presence of I2 or iodides (100). The butenediol can then be hydrogenated to butanediol [110-63-4]. In the presence of copper compounds and at pH 2, hydrogenation leads to furan (101). [Pg.343]

The main by-products of the Ullmaim condensation are l-aniinoanthraquinone-2-sulfonic acid and l-amino-4-hydroxyanthraquinone-2-sulfonic acid. The choice of copper catalyst affects the selectivity of these by-products. Generally, metal copper powder or copper(I) salt catalyst has a greater reactivity than copper(Il) salts. However, they are likely to yield the reduced product (l-aniinoanthraquinone-2-sulfonic acid). The reaction mechanism has not been estabUshed. It is very difficult to clarify which oxidation state of copper functions as catalyst, since this reaction involves fast redox equiUbria where anthraquinone derivatives and copper compounds are concerned. Some evidence indicates that the catalyst is probably a copper(I) compound (28,29). [Pg.310]

Mechanistically, these diazonio replacement reactions occur through radical rather than polar pathways. In the presence of a copper(I) compound, for instance, it s thought that the arenediazonium ion is first converted to an aryl radical plus copper(II), followed by subsequent reaction to give product plus regenerated copper(l) catalyst. [Pg.943]

The Ullman reaction has long been known as a method for the synthesis of aromatic ethers by the reaction of a phenol with an aromatic halide in the presence of a copper compound as a catalyst. It is a variation on the nucleophilic substitution reaction since a phenolic salt reacts with the halide. Nonactivated aromatic halides can be used in the synthesis of poly(arylene edier)s, dius providing a way of obtaining structures not available by the conventional nucleophilic route. The ease of halogen displacement was found to be the reverse of that observed for activated nucleophilic substitution reaction, that is, I > Br > Cl F. The polymerizations are conducted in benzophenone with a cuprous chloride-pyridine complex as a catalyst. Bromine compounds are the favored reactants.53,124 127 Poly(arylene ether)s have been prepared by Ullman coupling of bisphenols and... [Pg.346]

These two compounds with S configuration on their oxazohne rings were tested as copper(I) catalysts for the cyclopropanation of styrene, the hgand 9 with S axial chirality being much more enantioselective than 10 with the R configuration. Thus, the catalytic system CuOTf-(S,S)-bis(oxazolyl)-binaphthyl (9, R = Bu) led to excellent enantioselectivities, particularly for the cyclopropanation of styrene with (-menthyldiazoacetate 95% ee for the trans-cyclopropane and 97% ee for the cis, with trans/cis = 68/32. [Pg.98]

Chitwood (2) found that copper compounds exhibited only a short period of maximum catalytic activity for the dehydrogenation of ethanolamine to glycine salt. In this study, the catalytic activity of a skeletal copper catalyst was tested in repeated use. The catalyst used was prepared by selectively leaching CuAl2 particles in a 6.1 M NaOH solution at 293 K for 24 hours. Figure 1 shows the profiles of hydrogen evolved versus reaction time. [Pg.28]

For the Cu(OTf)2-promoted reaction between ethyl diazoacetate and cinnam-aldehyde dimethyl acetal, products 143-145 account for only 35% the total yield. C/C and C/H insertion products 151 and 152 are obtained additionally in 49 and 14% yield, respectively154). It was assumed that the copper compound acts through Lewis-acid catalysis here, just as it is believed to do when orthoesters are used as substrates 160). According to this, catalyst-induced formation of a methoxy-... [Pg.140]

Gevorgyan and co-workers demonstrated that allenyl imines can be formed in situ by treating alkynylimines with a base (see Section 15.8, compound 185) [71, 72]. The same principle also works for the in situ formation of allenyl ketones from alkynyl ketones and their conversion to furans with a copper(I) catalyst [71, 72]. That Cu(I) would catalyze the isomerization of an allenyl ketone was known from work of Hashmi et al. [57, 58],... [Pg.894]

In-the Reppe process, formaldehyde and acetylene are reacted in.the presence of a.copper acetylide catalyst to give 2-butyne-l,4-diol. That compound is then hydrogenated to give BDO. [Pg.208]

Catalysts suitable specifically for reduction of carbon-oxygen bonds are based on oxides of copper, zinc and chromium Adkins catalysts). The so-called copper chromite (which is not necessarily a stoichiometric compound) is prepared by thermal decomposition of ammonium chromate and copper nitrate [50]. Its activity and stability is improved if barium nitrate is added before the thermal decomposition [57]. Similarly prepared zinc chromite is suitable for reductions of unsaturated acids and esters to unsaturated alcohols [52]. These catalysts are used specifically for reduction of carbonyl- and carboxyl-containing compounds to alcohols. Aldehydes and ketones are reduced at 150-200° and 100-150 atm, whereas esters and acids require temperatures up to 300° and pressures up to 350 atm. Because such conditions require special equipment and because all reductions achievable with copper chromite catalysts can be accomplished by hydrides and complex hydrides the use of Adkins catalyst in the laboratory is very limited. [Pg.9]

Aliphatic and aromatic nitroso compounds are powerful dienophiles and react with a variety of acyclic, cychc and heterocyclic 1,3-dienes producing cyclic hydroxylamines. The reaction proceeds with a high regioselectivity at room temperature (equation 99 291-293 Asymmetric variation of the reaction with chiral copper-BINAP catalyst has been reported ". The cycloaddition is reversible and some amounts of diene and nitroso components may be observed in reaction products. [Pg.149]

As to catalytic reactions in homogeneous media, Moritz Traube found in his studies of the oxidation of hydrogen iodide by hydrogen peroxide in aqueous solution, that the catalyst ferrous sulfate is activated by copper sulfate (5). As to the magnitude of such effects, Price stated in 1898 (6) that the simultaneous action of iron and of copper compounds on the reaction between persulfate and hydrogen iodide causes an unexpected acceleration of the reaction, which is more than twice as great as the acceleration calculated as an additive effect of the two single catalysts. However, effects were also observed of the opposite kind,... [Pg.82]

The reaction of the same bismuthonium ylide with isothiocyanates in the presence of a copper(H) catalyst afforded the sulfur-incorporated spiro-cyclic compound as the main product, in addition to a small amount of carbon-carbon bond formed products (Scheme 12) [28],... [Pg.204]


See other pages where Copper compounds catalysts is mentioned: [Pg.255]    [Pg.258]    [Pg.798]    [Pg.230]    [Pg.1028]    [Pg.1551]    [Pg.181]    [Pg.91]    [Pg.79]    [Pg.836]    [Pg.85]    [Pg.255]    [Pg.85]    [Pg.255]    [Pg.426]    [Pg.22]    [Pg.273]    [Pg.407]    [Pg.117]    [Pg.837]    [Pg.304]    [Pg.799]    [Pg.1214]    [Pg.169]    [Pg.784]    [Pg.71]    [Pg.173]    [Pg.249]    [Pg.579]   


SEARCH



Catalysts compounds

Copper Compounds as Catalysts

Copper catalyst

Copper compounds

Copper compounds, as chiral catalysts for

Copper compounds, as chiral catalysts for Diels-Alder reaction

Copper oxidation catalysts aromatic compounds

Nitrogen compounds copper catalysts

© 2024 chempedia.info