Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymers cross-linked polymers

KEY TERMS transition metal complex ion copolymers cross-linked polymers... [Pg.125]

Tetrafunctional Iniferter Xs, X X X > x m ta m tx R x-m/ Vm x Star polymer, Star block copolymer, Cross-linked polymer... [Pg.82]

Star polymer. Star block copolymer. Cross-linked polymer... [Pg.84]

A polymer, by conventional definition, is a macromolecule made up of multiple equivalents of one or more monomers linked together by covalent bonds (e.g., carbon-carbon, amide, ester, or ether bonds) [1]. These conventional polymers come in many configurations for example, linear homopolymers, linear copolymers, block copolymers, cross-linked polymers, dendritic polymers. [Pg.617]

In a cross-linked polymer, the junction units are different kinds of monomers than the chain repeat units, so these molecules might be considered to be still another comonomer. While the chemical reactions which yield such cross-linked substances are copolymerizations, the products are described as cross-linked rather than as copolymers. In this instance, the behavior due to cross-linking takes precedence over the presence of an additional type of monomer in the structure. [Pg.12]

Haward et al.t have reported some research in which a copolymer of styrene and hydroxyethylmethacrylate was cross-linked by hexamethylene diisocyanate. Draw the structural formula for a portion of this cross-linked polymer and indicate what part of the molecule is the result of a condensation reaction and what part results from addition polymerization. These authors indicate that the crosslinking reaction is carried out in sufficiently dilute solutions of copolymer that the crosslinking is primarily intramolecular rather than intermolecular. Explain the distinction between these two terms and why concentration affects the relative amounts of each. [Pg.339]

Cross-linked macromolecular gels have been prepared by Eriedel-Crafts cross-linking of polystyrene with a dihaloaromatic compound, or Eriedel-Crafts cross-linking of styrene—chloroalkyl styrene copolymers. These polymers in their sulfonated form have found use as thermal stabilizers, especially for use in drilling fluids (193). Cross-linking polymers with good heat resistance were also prepared by Eriedel-Crafts reaction of diacid haUdes with haloaryl ethers (194). [Pg.563]

For substrates of WORM and EOD(PCR) disks the industry in the future wants polymers that have a markedly improved resistance to heat softening compared to BPA-PC and, if possible, a lower water absorption and lower birefringence, but otherwise maintain the good characteristics in toughness, production, and cost (194). This goal is being approached in different ways further modification of BPA-PC, newly developed polymers, improvement of the processing characteristics of uv-curable cross-linked polymers, and development of special copolymers and polymer blends, eg,... [Pg.158]

Other Polymers. Besides polycarbonates, poly(methyl methacrylate)s, cycfic polyolefins, and uv-curable cross-linked polymers, a host of other polymers have been examined for their suitabiUty as substrate materials for optical data storage, preferably compact disks, in the last years. These polymers have not gained commercial importance polystyrene (PS), poly(vinyl chloride) (PVC), cellulose acetobutyrate (CAB), bis(diallylpolycarbonate) (BDPC), poly(ethylene terephthalate) (PET), styrene—acrylonitrile copolymers (SAN), poly(vinyl acetate) (PVAC), and for substrates with high resistance to heat softening, polysulfones (PSU) and polyimides (PI). [Pg.162]

Fig. 26. Qualitative compatison of substrate materials for optical disks (187) An = birefringence IS = impact strength BM = bending modulus HDT = heat distortion temperature Met = metallizability WA = water absorption Proc = processibility. The materials are bisphenol A—polycarbonate (BPA-PC), copolymer (20 80) of BPA-PC and trimethylcyclohexane—polycarbonate (TMC-PC), poly(methyl methacrylate) (PMMA), uv-curable cross-linked polymer (uv-DM), cycHc polyolefins (CPO), and, for comparison, glass. Fig. 26. Qualitative compatison of substrate materials for optical disks (187) An = birefringence IS = impact strength BM = bending modulus HDT = heat distortion temperature Met = metallizability WA = water absorption Proc = processibility. The materials are bisphenol A—polycarbonate (BPA-PC), copolymer (20 80) of BPA-PC and trimethylcyclohexane—polycarbonate (TMC-PC), poly(methyl methacrylate) (PMMA), uv-curable cross-linked polymer (uv-DM), cycHc polyolefins (CPO), and, for comparison, glass.
Copolymers prepared from a vinyl monomer and a small proportion of a divinyl monomer are closely related to cross-linked polymers. They will be considered in the final section of the present chapter, where the application of the critical conditions set forth above will be discussed in greater detail. [Pg.360]

KEY TERMS hydrophobic hydrophilic monomer cross-linking polymer copolymer hydrogel... [Pg.225]

Cross-link density, 10 415-416, 417-418 direct measurement of, 10 426 427 Cross-linked copolymers, 7 6 lOt Cross-linked high amylose starch, 13 742 Cross-linked hydrogels, 13 729-730 Cross-linked polymers, internal stresses and, 10 423 424 Cross-linked starches, 4 721 Cross-linked thermoset polymer structure, 10 418... [Pg.233]

It is recommended that a reslurry of crude OSL in an organic solvent or 10% aqueous salt (e.g., NaHCOa) solution be performed to remove low-molecular-weight (mono-functional) species, waxes, and carbohydrates. This purification leads to an improvement in OSL reactivity and contributes to the usefulness of OSL as a PF resin extender or PF copolymer raw material. It is presumed that extraneous removed materials in the crude lignin react with formaldehyde but do not lead to productive cross-linking polymer formation. [Pg.333]

F14. —, and S. Loshaek Cross-linked polymers. I. Factors influencing the efficiency of crosslinking in copolymers of methyl methacrylate and glycol dimethacrylates. J. Am. Chem. Soc. 75, 3544 (1953). [Pg.230]

Wnek 180> proposed that the structure of the oxidized insulating form of conventionally formed polyaniline is approximately a 50 % copolymer of diamine and diimine units, corresponding to the emeraldine structure and Hjertberg et al.180 obtained CPMAS NMR evidence for this conclusion. Some confirmation of the structure has also been obtained by chemical synthesis of the polymer182). However, Kitani et al.183) have suggested that the normal electrochemical synthesis leads to partially cross-linked polymers. [Pg.23]

Superabsorbent polymers are now commonly made from the polymerization of acrylic acid blended with sodium hydroxide in the presence of an initiator to form a polyacrylic acid, sodium salt (sometimes referred to as cross-linked sodium polyacrylate). Some of the polymers include polyacrylamide copolymer, ethylene maleic anhydride copolymer, cross-linked carboxy-methyl-cellulose, polyvinyl alcohol copolymers, cross-linked polyethylene oxide, and starch grafted copolymer of polyacrylonitrile to name a few. The latter is one of the oldest SAP forms created. [Pg.32]

Know the meaning of homopolymer, copolymer, linear, branched, and cross-linked polymer. For copolymers, know the meaning of alternating, random, block, and graft. [Pg.265]

It is possible to classify polymers by their structure as linear, branched, cross-linked, and network polymers. In some polymers, called homopolymers, merely one monomer (a) is used for the formation of the chains, while in others two or more diverse monomers (a,p,y,...) can be combined to get different structures forming copolymers of linear, branched, cross-linked, and network polymeric molecular structures. Besides, on the basis of their properties, polymers are categorized as thermoplastics, elastomers, and thermosets. Thermoplastics are the majority of the polymers in use. They are linear or branched polymers characterized by the fact that they soften or melt, reversibly, when heated. Elastomers are cross-linked polymers that are highly elastic, that is, they can be lengthened or compressed to a considerable extent reversibly. Finally, thermosets are network polymers that are normally rigid and when heated do not soften or melt reversibly. [Pg.89]

Polymeric supports can also be used with advantage to form monofunctional moieties from difunctional (Hies. Leznoff has used this principal in the synthesis of sex attractants on polymer supports (67). Starting from a sheap symmetrical diol he blocked one hydroxyl group by the polymer. Functionalization of cross-linked polymers is mostly performed by chloromethylation (65). A very promising method to introduce functional groups into crosslinked styrene-divinylbenzene copolymers is the direct lithiation with butyllithium in presence of N,N,N, N -tetramethyl-ethylenediamine (TMEDA) (69, 70). Metalation of linear polystyrene with butyl-lithium/TMEDA showed no exchange of benzylic hydrogen and a ratio of attack at m/p-position of 2 1 (71). In the model reaction of cumene with amylsodium, a kinetic control of the reaction path is established. After 3h of treatment with amyl-sodiuni, cumene is metalated 42% in a-, 39% m-, and 19% p-position. After 20h the mixture equilibrates to affort 100% of the thermodynamically more stable a-prod-uct (72). [Pg.20]


See other pages where Copolymers cross-linked polymers is mentioned: [Pg.564]    [Pg.564]    [Pg.260]    [Pg.229]    [Pg.471]    [Pg.254]    [Pg.20]    [Pg.73]    [Pg.111]    [Pg.142]    [Pg.178]    [Pg.277]    [Pg.165]    [Pg.123]    [Pg.110]    [Pg.95]    [Pg.197]    [Pg.20]    [Pg.1656]    [Pg.260]    [Pg.247]    [Pg.156]    [Pg.69]    [Pg.909]    [Pg.33]    [Pg.47]    [Pg.471]   
See also in sourсe #XX -- [ Pg.372 , Pg.373 , Pg.374 ]




SEARCH



Cross polymer

Linked polymer

Physically cross-linked polymers block copolymers

Polymer copolymers

Polymer cross-link

© 2024 chempedia.info