Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymerization solvent-effect

One final point should be made. The observation of significant solvent effects on kp in homopolymerization and on reactivity ratios in copolymerization (Section 8.3.1) calls into question the methods for reactivity ratio measurement which rely on evaluation of the polymer composition for various monomer feed ratios (Section 7.3.2). If solvent effects arc significant, it would seem to follow that reactivity ratios in bulk copolymerization should be a function of the feed composition.138 Moreover, since the reaction medium alters with conversion, the reactivity ratios may also vary with conversion. Thus the two most common sources of data used in reactivity ratio determination (i.e. low conversion composition measurements and composition conversion measurements) are potentially flawed. A corollary of this statement also provides one explanation for any failure of reactivity ratios to predict copolymer composition at high conversion. The effect of solvents on radical copolymerization remains an area in need of further research. [Pg.361]

The effects of solvent on radical copolymerization are mentioned in a number of reviews.69 72 97,98 For copolymerizations involving monomers that arc ionizablc or form hydrogen bonds (AM, MAM, HEA, HEMA, MAA, etc.) solvent effects on reactivity ratios can be dramatic. Some data for MAA-MMA copolymerization are shown in Table 8.4.w... [Pg.429]

For copolymerizations between non protie monomers solvent effects are less marked. Indeed, early work concluded that the reactivity ratios in copolymerizations involving only non-protic monomers (eg. S, MMA, AN, VAe, etc.) should show no solvent dependence.100101 More recent studies on these and other systems (e.g. AN-S,102-105 E-VAc,106 MAN-S,107 MMA-S,10s "° MMA-VAc1" ) indicate small yet significant solvent effects (some recent data for AN-S copolymerization are shown in Table 8.5). However, the origin of the solvent effect in these cases is not clear. There have been various attempts to rationalize solvent effects on copolymerization by establishing correlations between radical reactivity and various solvent and monomer properties.71,72 97 99 None has been entirely successful. [Pg.429]

The solvent in a bulk copolymerization comprises the monomers. The nature of the solvent will necessarily change with conversion from monomers to a mixture of monomers and polymers, and, in most cases, the ratio of monomers in the feed will also vary with conversion. For S-AN copolymerization, since the reactivity ratios are different in toluene and in acetonitrile, we should anticipate that the reactivity ratios are different in bulk copolymerizations when the monomer mix is either mostly AN or mostly S. This calls into question the usual method of measuring reactivity ratios by examining the copolymer composition for various monomer feed compositions at very low monomer conversion. We can note that reactivity ratios can be estimated for a single monomer feed composition by analyzing the monomer sequence distribution. Analysis of the dependence of reactivity ratios determined in this manner of monomer feed ratio should therefore provide evidence for solvent effects. These considerations should not be ignored in solution polymerization either. [Pg.430]

Studies on the reactions of small model radicals with monomers provide indirect support but do not prove the bootstrap effect.111 Krstina et ahL i showed that the reactivities of MMA and MAN model radicals towards MMA, S and VAc were independent of solvent. However, small but significant solvent effects on reactivity ratios are reported for MMA/VAc111 and MMA S 7 copolymerizations. For the model systems, where there is no polymer coil to solvate, there should be no bootstrap effect and reactivities are determined by the global monomer ratio [Ma0]/[Mb0].1j1... [Pg.431]

Solvent Effects in the Sn Spectra of Poly(TBTM/MMA). Samples of poly(MMA/TBTM) synthesized by the free-radical copolymerization of the appropriate monomers were solutions in benzene with approximately 33% solids (weight to volume). The particular formulation chosen as representative of the class contained a 1 1 ratio of pendant methyl to tri-n-butyltin groups. In preparing the dry polymer, the benzene was removed in vacuo with nominally 5% by weight residual solvent. [Pg.486]

Nevertheless, there is still much work to do in this field. The inclusion of solvent and/or counterions is just at the beginning, and solvent effects have been included with continuum models only. In the next years we will probably arrive to dynamically simulate the whole polymerization process in the presence of the counterion and of explicit solvent molecules. As for the experimental issues which have been not rationalized yet computationally, we remark that still it is not easy to model the relative activity of different catalysts, and even to predict if a certain catalyst will show any activity at all. Moreover, copolymerizations still represent an untackled problem. However, considering the pace at which the understanding of once obscure facts progressed it is not difficult to predict that also these challenges will be positively solved. [Pg.51]

For any specific type of initiation (i.e., radical, cationic, or anionic) the monomer reactivity ratios and therefore the copolymer composition equation are independent of many reaction parameters. Since termination and initiation rate constants are not involved, the copolymer composition is independent of differences in the rates of initiation and termination or of the absence or presence of inhibitors or chain-transfer agents. Under a wide range of conditions the copolymer composition is independent of the degree of polymerization. The only limitation on this generalization is that the copolymer be a high polymer. Further, the particular initiation system used in a radical copolymerization has no effect on copolymer composition. The same copolymer composition is obtained irrespective of whether initiation occurs by the thermal homolysis of initiators such as AIBN or peroxides, redox, photolysis, or radiolysis. Solvent effects on copolymer composition are found in some radical copolymerizations (Sec. 6-3a). Ionic copolymerizations usually show significant effects of solvent as well as counterion on copolymer composition (Sec. 6-4). [Pg.471]

Monomer reactivity ratios and copolymer compositions in many anionic copolymerizations are altered by changes in the solvent or counterion. Table 6-12 shows data for styrene-isoprene copolymerization at 25°C by n-butyl lithium [Kelley and Tobolsky, 1959]. As in the case of cationic copolymerization, the effects of solvent and counterion cannot be considered independently of each other. For the tightly bound lithium counterion, there are large effects due to the solvent. In poor solvents the copolymer is rich in the less reactive (based on relative rates of homopolymerization) isoprene because isoprene is preferentially complexed by lithium ion. (The complexing of 1,3-dienes with lithium ion is discussed further in Sec. 8-6b). In good solvents preferential solvation by monomer is much less important and the inherent greater reactivity of styrene exerts itself. The quantitative effect of solvent on copolymer composition is less for the more loosely bound sodium counterion. [Pg.511]

As in the case of olefin or diene homopolymerization by RLi, copolymerization is particularly sensitive to solvent effects. Initial-charge (all monomers added together) copolymerization of butadiene and styrene tends to result in a tapered block copolymer (a block of butadiene with increasing levels of styrene, followed by a block of styrene) in hydrocarbon solvents and a random copolymer (a uniform distribution of butadiene and styrene) in polar media. [Pg.78]

These copolymerization parameters are only slightly influenced by the solvent used (Table 18) [116], suggesting a small solvent effect on the propagation reaction. The reactivity of methyl a-methoxyacrylate towards a polystyryl radical (l/r2) however tends to increase with increasing Ex value or dielectric constant of the solvent. Here again it appears that increased solvent polarity leads to an increased persistency of the captodative radical. [Pg.89]

The thermodynamic excluded volume effect should be also reflected as a solvent effect on gelation. That is, a more delayed gelation is expected in a good solvent than in a poor solvent this was the case in the solution polymerization of DAP in various solvents [75,76]. In this connection, Walling [3] has reported the solvent effect on the gelation in the copolymerization of MMA with EDMA, but the result was contrary to our expectations. So, we will discuss this subject in more detail later. [Pg.62]

A similar solvent effect was also observed in the gelation behavior of the copolymerization of MMA with nonaethylene glycol dimethacrylate [104] The delay between the actual gel point and the theoretical one was much larger in... [Pg.74]

In the end of 1960s, Nikolaev et al.29 and Ito et al.30 independently demonstrated an appreciable effect of the reaction medium on the reactivity ratios in the copolymerization of methyl methacrylate and styrene (Table 19). Ito et al. found that the relative reactivity of methyl methacrylate toward the polystyryl radical is correlated with the transition energies ET for the longest wavelength absorption band for pyridinum TV-phenolbetaine in solvents. They suggested that the polarized structure of methyl methacrylate monomer becomes important in the transition state. Bonta et al.32 also demonstrated that there is an appreciable solvent effect on the reactivity ratio in the styrene-methyl methacrylate copolymerization in non-... [Pg.81]

Chapiro142 has drawn attention to the fact that physical aggregation phenomena are often neglected in the interpretation of copolymerization data. He showed that copolymerizations involving monomers which can form aggregates exhibit very pronounced solvent effects. The importance of such effects was pointed out by Takemoto et al.143,144, the copolymerization of a vinyl monomer having a nucleic acid base. [Pg.82]

If the complexed radical is inactive (k n = kx 2 = k22 = k21 = 0), Eq. (7.8) reduces to the ordinary Mayo-Lewis equation and no solvent effect on the reactivity ratio will be observed. Busfield et al.108) studied the solvent effect on the free radical copolymerization of vinyl acetate and methyl methacrylate. The methyl methacrylate content is unaffected by benzene and ethyl acetate. This result seems to be consistent with our assumption that the complexed radical is inactive in propagation. However, the solvent effect might not be observed in the case in which the reactivity of the complexed radical is proportional to that of the uncomplexed radical, because also in this case Eq. (7.8) reduces to the Mayo-Lewis form. It is difficult, therefore, to expect from the copolymerization experiment some evidence to support the concept of the complex formation. [Pg.83]

One final point should be made. The observation of significant solvent effects on kj, in homopolynierization and on reactivity ratios in copolymerization (Section... [Pg.361]


See other pages where Copolymerization solvent-effect is mentioned: [Pg.357]    [Pg.432]    [Pg.638]    [Pg.10]    [Pg.11]    [Pg.18]    [Pg.79]    [Pg.531]    [Pg.113]    [Pg.41]    [Pg.74]    [Pg.75]    [Pg.77]    [Pg.68]    [Pg.55]    [Pg.56]    [Pg.57]    [Pg.80]    [Pg.81]    [Pg.156]    [Pg.25]    [Pg.357]    [Pg.361]    [Pg.432]   


SEARCH



Acrylonitrile copolymerization solvent effects

Chain copolymerization solvent effect

Copolymerization effect

Copolymerization effect of solvent

Ethylene copolymerization solvent effects

Solvent effects on copolymerization

Sty rene copolymerization solvent effects

Vinyl acetate copolymerization solvent effects

© 2024 chempedia.info