Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolyester aliphatic

Hie ester linkage of aliphatic and aliphatic-aromatic copolyesters can easily be cleaved by hydrolysis under alkaline, acid, or enzymatic catalysis. This feature makes polyesters very attractive for two related, but quite different, applications (i) bioresorbable, bioabsorbable, or bioerodible polymers and (ii) environmentally degradable and recyclable polymers. [Pg.27]

Hie most representative member of this class of polyesters is the low-molar-mass (M 1000-3000) hydroxy-terminated aliphatic poly(2,2/-oxydiethylene adipate) obtained by esterification between adipic acid and diethylene glycol. This oligomer is used as a macromonomer in the synthesis of polyurethane elastomers and flexible foams by reaction with diisocyanates (see Chapter 5). Hydroxy-terminated poly(f -caprolactonc) and copolyesters of various diols or polyols and diacids, such as o-phthalic acid or hydroxy acids, broaden the range of properties and applications of polyester polyols. [Pg.29]

TPEs associating both rigid and soft polyester blocks have also been described. They cannot be obtained by the melt polyesterification used for polyesterether TPEs, since interchange reactions would yield random—rather than block — copolyesters. The preferred method involves the reaction of OH-terminated aliphatic and aromatic-aliphatic polyesters with chain extenders such as diisocyanates and results in copoly(ester-ester-urethane)s. [Pg.55]

Nagata M, Machida T, Sakai W, and Tsutsumi N. Synthesis characterization and enzymatic degradation of network aliphatic copolyesters. J Polym Sci A Polym Chem, 1999, 37, 2005-2011. [Pg.247]

Copolyesters (such as BIOMAX ) which combine aromatic esters with aliphatic esters or other polymer units (e.g. ethers and amides) provide the opportunity to adjust and control the degradation rates. These added degrees of freedom on polymer composition provide the opportunity to rebalance the polymer to more specifically match application performance in physical properties, while still maintaining the ability to adjust the copolyesters to complement the degradation of natural products for the production of methane or humic substances. Since application performance requirements and application specific environmental factors and degradation expectations vary broadly, copolyesters are, and will continue to be, an important class of degradable polyesters. [Pg.606]

We report here that polyethylene adipate (PEA) and polycaprolactone (PCL) were degraded by Penicillium spp., and aliphatic and alicyclic polyesters,ester type polyurethanes, copolyesters composed of aliphatic and aromatic polyester (CPE) and copolyamide-esters (CPAE) were hydrolyzed by several lipases and an esterase. Concerning these water-insoluble condensation polymers, we noted that the melting points (Tm) had a effect on biodegradability. [Pg.136]

At the end of the 1990s, BASF commercialized Ecoflex F, a completely biodegradable statistical copolyester based on the fossil monomers 1,4-butanediol (BDO), adipic acid and terephthalic acid (see Fig. 3). Ecoflex F combines the good biodegradability known from aliphatic polyesters with the good mechanical properties of aromatic polyesters. [Pg.104]

M.D. Shelby, A.J. Matosky, C.M. Tanner, and M.E. Donelson, Blends of aliphatic-aromatic copolyesters with ethylene-vinyl acetate copolymers, US Patent 7 241838, assigned to Eastman Chemical Company (Kingsport, TN), July 10,2007. [Pg.208]

Thermoplastic copolyester elastomers are generally block copolymers produced from short-chain aliphatic diols, aromatic diacids, and polyalkylene ether-diols. They are often called polyesterether or polyester elastomers. The most significant commercial product is the copolymer from butane-1,4-diol, dimethyl terephthalate, and polytetramethylene ether glycol [25190-06-1/, which produces a segmented block copolyesterether with the following structure. [Pg.301]

Several review articles on biodegradable polymers and polyesters have appeared in the literature [12-22]. Extensive studies have been carried out by Al-bertsson and coworkers developing biodegradable polymers such as polyesters, polyanhydrides, polycarbonates, etc., and relating the structure and properties of aliphatic polyesters prepared by ROP and polycondensation techniques. In the present paper, the current status of aliphatic polyesters and copolyesters (block, random, and star-shaped), their synthesis and characterization, properties, degradation, and applications are described. Emphasis is placed primarily on aliphatic polyesters derived by condensation of diols with dicarboxylic acids (or their derivatives) or by the ROP of cyclic monoesters. Polyesters derived from cyclic diesters or microbial polyesters are beyond the scope of this review. [Pg.3]

Fu, H., Kulshrestha, A. S., Gao, W., and Gross, R. A. 2003. Physical characterization of sorbitol or glycerol containing aliphatic copolyesters synthesized by lipase-catalyzed polymerization. Macromolecules, 36, 9804—9808. [Pg.161]

Nowadays, various aliphatic copolyesters based on succinate, adipate, ethylene glycol and 1,4-butanediol are being produced. Aliphatic polyesters based on natural feedstock such lactic acid are also being produced on a commercial scale by companies such as NatureWorks TLC. [Pg.23]

Starch-based materials represent the largest class of biodegradable polymer with 44,800 tonnes (including loose-fill foam packaging) consumed in 2005. Excluding loose-fill, starch-based materials amounted to 21,700 tonnes in 2005. Polylactic acid (PLA) is the second largest material class with 35,800 tonnes in 2005, followed by synthetic aliphatic-aromatic copolyesters with 14,000 tonnes. The embryonic PHA category amounts to around 250 tonnes. [Pg.42]


See other pages where Copolyester aliphatic is mentioned: [Pg.29]    [Pg.2596]    [Pg.29]    [Pg.2596]    [Pg.591]    [Pg.18]    [Pg.20]    [Pg.31]    [Pg.38]    [Pg.38]    [Pg.40]    [Pg.40]    [Pg.41]    [Pg.50]    [Pg.77]    [Pg.34]    [Pg.108]    [Pg.276]    [Pg.21]    [Pg.256]    [Pg.268]    [Pg.489]    [Pg.594]    [Pg.605]    [Pg.605]    [Pg.776]    [Pg.20]    [Pg.136]    [Pg.137]    [Pg.145]    [Pg.67]    [Pg.252]    [Pg.260]    [Pg.100]    [Pg.3]    [Pg.5]    [Pg.133]    [Pg.720]    [Pg.87]   


SEARCH



Aliphatic copolyesters

Copolyesters

© 2024 chempedia.info