Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination systems, linear

The adequacy of these relationships can be seen from Fig. 2.6, where a coordinate system linearizing these equations was chosen. On the basis of Eqs (2.13), (2.17) and (2.18), it is possible to formulate the final equation of the kinetic model for anionic polymerization of e-caprolactam ... [Pg.27]

The solution of the hydrodynamic equations requires modeling the system, writing the equations in the appropriate coordinate system (linear, cylindrical, etc.), specifying the boundary conditions, and usually, solving the problem numerically. In electrochemical problems, only the steady-state velocity profile is of interest therefore (9.2.9) is solved for dwldt = 0. [Pg.334]

For the interaction between a nonlinear molecule and an atom, one can place the coordinate system at the centre of mass of the molecule so that the PES is a fiinction of tlie three spherical polar coordinates needed to specify the location of the atom. If the molecule is linear, V does not depend on <() and the PES is a fiinction of only two variables. In the general case of two nonlinear molecules, the interaction energy depends on the distance between the centres of mass, and five of the six Euler angles needed to specify the relative orientation of the molecular axes with respect to the global or space-fixed coordinate axes. [Pg.186]

Consider the case of two neutral, linear, dipolar molecules, such as HCN and KCl, in a coordinate system with its origin at the CM of molecule A and the z-axis aligned with the intemiolecular vector r pointing from the CM of A to the CM of B. The relative orientation of the two molecules is uniquely specified by their spherical polar angles 0, 03 and the difierence <]) = - <])3 between their azimuthal angles. The leading temi in the... [Pg.189]

Until now we have implicitly assumed that our problem is formulated in a space-fixed coordinate system. However, electronic wave functions are naturally expressed in the system bound to the molecule otherwise they generally also depend on the rotational coordinate 4>. (This is not the case for E electronic states, for which the wave functions are invariant with respect to (j> ) The eigenfunctions of the electronic Hamiltonian, v / and v , computed in the framework of the BO approximation ( adiabatic electronic wave functions) for two electronic states into which a spatially degenerate state of linear molecule splits upon bending. [Pg.484]

LORG (localized orbital-local origin) technique for removing dependence on the coordinate system when computing NMR chemical shifts LSDA (local spin-density approximation) approximation used in more approximate DFT methods for open-shell systems LSER (linear solvent energy relationships) method for computing solvation energy... [Pg.365]

The practical way of calculating 2 is different from that used in the derivation of (4.18). Since 2 is invariant with respect to canonical transformations, it is preferable to seek it in the initial coordinate system. Writing the linearized equation for deviations from the instanton solution 6Q,... [Pg.65]

The governing equations (Equations 42, 67, 74 and 81) describing the filtration mechanisms are expressed as linear relationships with parameters conveniently grouped into constants that are functions of the specific operating conditions. The exact form of the linear functional relationships depends on the filtration mechanism. Table 1 lists the coordinate systems that will provide linear plots of filtration data depending on the controlling mechanism. [Pg.181]

Each atom may vibrate along tliree different coordinates (giving rise to 3N vibrations). However, the origin of the coordinate system and the orientation of the molecule in the coordinate system are arbitrary. This eliminates six vibrations, leaving 3N-6. Linear molecules require only two variables to specify their orientation. Here, only five vibrations are eliminated, leaving 3N-.S. [Pg.257]

Some coordinate transformations are non-linear, like transforming Cartesian to polar coordinates, where the polar coordinates are given in terms of square root and trigonometric functions of the Cartesian coordinates. This for example allows the Schrodinger equation for the hydrogen atom to be solved. Other transformations are linear, i.e. the new coordinate axes are linear combinations of the old coordinates. Such transfonnations can be used for reducing a matrix representation of an operator to a diagonal form. In the new coordinate system, the many-dimensional operator can be written as a sum of one-dimensional operators. [Pg.309]

A linear coordinate transformation may be illustrated by a simple two-dimensional example. The new coordinate system is defined in term of the old by means of a rotation matrix, U. In the general case the U matrix is unitary (complex elements), although for most applications it may be chosen to be orthogonal (real elements). This means that the matrix inverse is given by transposing the complex conjugate, or in the... [Pg.310]

The vectors 0, , e , and are linearly independent. In this coordinate system an arbitrary vector can be written as follows... [Pg.554]

We established the coordinate system and plotted the curves using the Z-voltage of the piezoelectric ceramic as the X axis and the lateral voltage of the detector with four quadrants (V/s, Vii and Vn - Vi ) as the Y axis, as shown in Fig. 6. We fit linearly the varieties of the lateral voltages in the detector with four quadrants to the varieties of the... [Pg.191]

Figure 7, Schematic representation of the 1-TS (solid) and 2-TS (dashed) (where TS = transition state) reaction paths in the reaction Ha + HbHc Ha He + Hb- The H3 potential energy surface is represented using the hyperspherical coordinate system of Kuppermann [54], in which the equilateral-triangle geometry of the Cl is in the center (x), and the linear transition states ( ) are on the perimeter of the circle the hyperradius p = 3.9 a.u. The angle is the internal angular coordinate that describes motion around the CL... Figure 7, Schematic representation of the 1-TS (solid) and 2-TS (dashed) (where TS = transition state) reaction paths in the reaction Ha + HbHc Ha He + Hb- The H3 potential energy surface is represented using the hyperspherical coordinate system of Kuppermann [54], in which the equilateral-triangle geometry of the Cl is in the center (x), and the linear transition states ( ) are on the perimeter of the circle the hyperradius p = 3.9 a.u. The angle is the internal angular coordinate that describes motion around the CL...
Although the foregoing example in Sec. 4.2.1 is based on a linear coordinate system, the methods apply equally to other systems, represented by cylindrical and spherical coordinates. An example of diffusion in a spherical coordinate system is provided by simulation example BEAD. Here the only additional complication in the basic modelling approach is the need to describe the geometry of the system, in terms of the changing area for diffusional flow through the bead. [Pg.227]

To find the irreducible representations of 0(3) it is necessary to find a set of basis functions which transform into their linear combinations on operating with the elements of 0(3). The set of 21 + 1 spherical harmonics Y[m(d, ), where l = 0,1, 2... and —l[Pg.91]

The concept of transition moment is of major importance for all experiments carried out with polarized light (in particular for fluorescence polarization experiments, see Chapter 5). In most cases, the transition moment can be drawn as a vector in the coordinate system defined by the location of the nuclei of the atoms4 therefore, the molecules whose absorption transition moments are parallel to the electric vector of a linearly polarized incident light are preferentially excited. The probability of excitation is proportional to the square of the scalar product of the transition moment and the electric vector. This probability is thus maximum when the two vectors are parallel and zero when they are perpendicular. [Pg.27]

Principal component analysis (PCA) can be considered as the mother of all methods in multivariate data analysis. The aim of PCA is dimension reduction and PCA is the most frequently applied method for computing linear latent variables (components). PCA can be seen as a method to compute a new coordinate system formed by the latent variables, which is orthogonal, and where only the most informative dimensions are used. Latent variables from PCA optimally represent the distances between the objects in the high-dimensional variable space—remember, the distance of objects is considered as an inverse similarity of the objects. PCA considers all variables and accommodates the total data structure it is a method for exploratory data analysis (unsupervised learning) and can be applied to practical any A-matrix no y-data (properties) are considered and therefore not necessary. [Pg.73]


See other pages where Coordination systems, linear is mentioned: [Pg.1075]    [Pg.31]    [Pg.136]    [Pg.55]    [Pg.386]    [Pg.420]    [Pg.612]    [Pg.359]    [Pg.302]    [Pg.323]    [Pg.22]    [Pg.30]    [Pg.128]    [Pg.195]    [Pg.200]    [Pg.213]    [Pg.161]    [Pg.162]    [Pg.25]    [Pg.245]    [Pg.96]    [Pg.59]    [Pg.193]    [Pg.82]    [Pg.248]    [Pg.260]    [Pg.218]    [Pg.283]    [Pg.419]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Coordinate system

Linear systems

Linearize coordinates

Linearized system

© 2024 chempedia.info