Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination compound bonding

Other theoretical considerations for synthetic coordination chemistry (isolobal and isoelectronic analogies, chelate, cis and trans effects, factors affecting the acid/ base properties of coordination compounds, bond theories, etc.) are covered in detail in excellent recent monographs [3,34b,104,106] and, for this reason, are not presented in this book. [Pg.12]

Lewis acid-base adducts involving metal ions are called coordination compounds (bonds formed with both electrons from one atom are called coordinate bonds) their chemistry will be discussed in Chapters 9 through 14. [Pg.171]

In this chapter, we examine the properties of the transition metals and their ions more closely. We also examine the properties of coordination compounds in some detail. We first discussed this common type of transition metal compound in Chapter 16 (see Section 16.8). In a coordination compound, bonds to a central metal ion split the d orbitals much as they are split in the aystals of gemstones. The theory that explains these splittings and the corresponding colors is crystal field theory, which we also explore in this chapter. [Pg.1100]

MOMEC is a force field for describing transition metal coordination compounds. It was originally parameterized to use four valence terms, but not an electrostatic term. The metal-ligand interactions consist of a bond-stretch term only. The coordination sphere is maintained by nonbond interactions between ligands. MOMEC generally works reasonably well for octahedrally coordinated compounds. [Pg.55]

Electron correlation is often very important as well. The presence of multiple bonding interactions, such as pi back bonding, makes coordination compounds more sensitive to correlation than organic compounds. In some cases, the HF wave function does not provide even a qualitatively correct description of the compound. If the weight of the reference determinant in a single-reference CISD calculation is less than about 0.9, then the HF wave function is not qualitatively correct. In such cases, multiple-determinant, MSCSF, CASPT2, or MRCI calculations tend to be the most efficient methods. The alternative is... [Pg.288]

Formation of a Tr-allylpalladium complex 29 takes place by the oxidative addition of allylic compounds, typically allylic esters, to Pd(0). The rr-allylpal-ladium complex is a resonance form of ir-allylpalladium and a coordinated tt-bond. TT-Allylpalladium complex formation involves inversion of stereochemistry, and the attack of the soft carbon nucleophile on the 7r-allylpalladium complex is also inversion, resulting in overall retention of the stereochemistry. On the other hand, the attack of hard carbon nucleophiles is retention, and hence Overall inversion takes place by the reaction of the hard carbon nucleophiles. [Pg.15]

The triply connected phosphoms compounds have a lone electron pair that dominates much of the chemistry for these compounds. Triply connected compounds typically exhibit pyramidal symmetry arising fromp hybridization. A considerable amount of sp character may be present as well. Bond angles range near 100° vs 90° theoretical. Tricoordinate compounds typically act as electron donors, forming metal coordination compounds and addition compounds such as H P BF [41593-56-0]. [Pg.358]

The participation of phosphoms d orbitals in the five- and six-coordinate compounds provides increased polarizabiUty, nucleophilicity, and ionic character. In fact, compounds such as phosphoms pentachloride [10026-13-8] 5) thought to have considerable ionic character. The CJ-bond orders between the phosphoms atom and its constituents in the higher coordinate compounds maybe less than one. [Pg.358]

Trialkyl- and triarylarsine sulfides have been prepared by several different methods. The reaction of sulfur with a tertiary arsine, with or without a solvent, gives the sulfides in almost quantitative yields. Another method involves the reaction of hydrogen sulfide with a tertiary arsine oxide, hydroxyhahde, or dihaloarsorane. X-ray diffraction studies of triphenylarsine sulfide [3937-40-4], C gH AsS, show the arsenic to be tetrahedral the arsenic—sulfur bond is a tme double bond (137). Triphenylarsine sulfide and trimethylarsine sulfide [38859-90-4], C H AsS, form a number of coordination compounds with salts of transition elements (138,139). Both trialkyl- and triarylarsine selenides have been reported. The trialkyl compounds have been prepared by refluxing trialkylarsines with selenium powder (140). The preparation of triphenylarsine selenide [65374-39-2], C gH AsSe, from dichlorotriphenylarsorane and hydrogen selenide has been reported (141), but other workers could not dupHcate this work (140). [Pg.338]

Amine—borane adducts have the general formula R3N BX where R = H, alkyl, etc, and X = alkyl, H, halogen, etc. These compounds, characterized by a coordinate covalent bond between boron and nitrogen, form a class of reducing agents having a broad spectmm of reduction potentials (5). [Pg.261]

The chemistry of Cr(III) in aqueous solution is coordination chemistry (see Coordination compounds). It is dominated by the formation of kineticaHy inert, octahedral complexes. The bonding can be described by Ss]] hybridization, and HteraHy thousands of complexes have been prepared. The kinetic inertness results from the electronic configuration of the Cr ion (41). This type of orbital charge distribution makes ligand displacement and... [Pg.135]

Other types of bonding include donation by Ligand TT-orbitals, as in the classical Zeiss s salt ion [Pt( 7 -CH2=CH2)Cl3] [12275-00-2] and sandwich compounds such as ferrocene. Another type is the delta (5) bond, as in the Re2Clg ion, which consists of two ReCl squares with the Re—Re bonding and echpsed chlorides. The Re—Re 5 bond makes the system quadmply bonded and holds the chlorides in sterically crowded conditions. Numerous other coordination compounds contain two or more metal atoms having metal—metal bonds (11). [Pg.168]

The properties of copper(Il) are quite different. Ligands that form strong coordinate bonds bind copper(Il) readily to form complexes in which the copper has coordination numbers of 4 or 6, such as tetraammine copper(Tl) [16828-95-8] [Cu(NH3)4], and hexaaquacopper(Il) [14946-74-8] [Cu(H,0),p+ ( see Coordination compounds). Formation of copper(Il) complexes in aqueous solution depends on the abiUty of the ligands to compete with water for coordination sites. Most copper(Il) complexes are colored and paramagnetic as a result of the unpaired electron in the 2d orbital (see Copper... [Pg.195]

Furazano[3,4-/]quinoxaline, 7,8-diphenyl-synthesis, 6, 412 Furazanothiophene synthesis, 6, 417 Furazans, 6, 393-426 biological activity, 6, 425 bond angles, 6, 396 bond lengths, 6, 396 coordination compounds, 6, 403 diamagnetic susceptibilities, 6, 395 dipole moments, 6, 395, 400 heats of combustion, 6, 400 heterocyclic ring reactions, 6, 400-403 IR spectra, 6, 398 isoxazoles from, 6, 81 mass spectra, 6, 399 microwave spectroscopy, 6, 395, 396 MO calculations, 6, 395 monosubstituted... [Pg.636]

The BH4 ion is essentially non-coordinating in its alkali metal salts. However, despite the fact that it is isoelectronic with methane, BH4 has been found to act as a versatile ligand, forming many coordination compounds by means of 3-centre B-H M bonds to somewhat less electropositive metals. " Indeed, BH4 ... [Pg.155]

A coordination compound, or complex, is formed when a Lewis base (ligand) is attached to a Lewis acid (acceptor) by means of a lone-pair of electrons. Where the ligand is composed of a number of atoms, the one which is directly attached to the acceptor is called the donor atom . This type of bonding has already been discussed (p. 198) and is exemplified by the addition compounds formed by the trihalides of the elements of Group 13 (p. 237) it is also the basis of much of the chemistry of the... [Pg.905]

However, it was about 8 years after the first synthesis of tetramesityldisilene before stable coordination compounds became known. The main reason for this is the kinetic stabilization of the known disilenes by bulky substituents, which effectively prevents the coordination of the double bond to a metal fragment. Thus, a direct coordination of stable disilenes appeared to be reasonable only if metals with very low coordination numbers were used. [Pg.39]

As with other crystalline substances, on heating coordination compounds may melt, sublime, decompose, or undergo a solid phase transition. The greater complexity of the constituents present increases the number of types of bond redistribution processes which are, in principle, possible within and between the coordination spheres. The following solid-state transitions may be distinguished (i) changes in relative dispositions... [Pg.231]

Comparative studies [1127] of the kinetics of decomposition of similar salts containing related pyridine ligands have been used to investigate the strength of M—N bonds in coordination compounds. Non-isothermal DSC measurements were used to determine values of E for the reactions... [Pg.235]

Oxygen bonding in coordination compounds. B. Jezowska-Trzebiatowska, Coord. Chem. Rev.,... [Pg.35]


See other pages where Coordination compound bonding is mentioned: [Pg.358]    [Pg.863]    [Pg.1957]    [Pg.39]    [Pg.358]    [Pg.863]    [Pg.1957]    [Pg.39]    [Pg.152]    [Pg.351]    [Pg.114]    [Pg.161]    [Pg.164]    [Pg.273]    [Pg.357]    [Pg.176]    [Pg.333]    [Pg.75]    [Pg.338]    [Pg.438]    [Pg.74]    [Pg.316]    [Pg.124]    [Pg.114]    [Pg.164]    [Pg.912]    [Pg.918]    [Pg.995]    [Pg.1057]    [Pg.36]    [Pg.37]    [Pg.179]    [Pg.2]    [Pg.5]    [Pg.143]   
See also in sourсe #XX -- [ Pg.883 ]

See also in sourсe #XX -- [ Pg.967 ]

See also in sourсe #XX -- [ Pg.695 ]




SEARCH



Bonding coordinate

Coordinate bond

Coordination bonding

Coordinative bonding

Coordinative bonding coordinate

© 2024 chempedia.info