Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst coordination

Coolwater Coomassie Brilliant Blue Cooperite Cooper pairs Coordination Coordination catalysts... [Pg.247]

Twelve-membered rings have been obtained using coordination catalysts. The transJmns,ds-cyc. ododec2Lti ien.e has been prepared with a tetrabutyl titanate—diethylalurninum chloride catalyst (48,49) and with a chromium-based system (50). The trans,trans,trans-isom.e-i. has been prepared with a nickel system. [Pg.465]

Al—Ti Catalyst for cis-l,4-PoIyisoprene. Of the many catalysts that polymerize isoprene, four have attained commercial importance. One is a coordination catalyst based on an aluminum alkyl and a vanadium salt which produces /n j -l,4-polyisoprene. A second is a lithium alkyl which produces 90% i7j -l,4-polyisoprene. Very high (99%) i7j -l,4-polyisoprene is produced with coordination catalysts consisting of a combination of titanium tetrachloride, TiCl, plus a trialkyl aluminum, R Al, or a combination of TiCl with an alane (aluminum hydride derivative) (86—88). [Pg.467]

Polypropylene. One of the most important appHcations of propylene is as a monomer for the production of polypropylene. Propylene is polymerized by Ziegler-Natta coordination catalysts (92,93). Polymerization is carried out either in the Hquid phase where the polymer forms a slurry of particles, or in the gas phase where the polymer forms dry soHd particles. Propylene polymerization is an exothermic reaction (94). [Pg.128]

High Density Polyethylene. High density polyethylene (HDPE), 0.94—0.97 g/cm, is a thermoplastic prepared commercially by two catalytic methods. In one, coordination catalysts are prepared from an aluminum alkyl and titanium tetrachloride in heptane. The other method uses metal oxide catalysts supported on a carrier (see Catalysis). [Pg.327]

These appHcations are mosdy examples of homogeneous catalysis. Coordination catalysts that are attached to polymers via phosphine, siloxy, or other side chains have also shown promise. The catalytic specificity is often modified by such immobilization. Metal enzymes are, from this point of view, anchored coordination catalysts immobilized by the protein chains. Even multistep syntheses are possible using alternating catalysts along polymer chains. Other polynuclear coordination species, such as the homopoly and heteropoly ions, also have appHcations in reaction catalysis. [Pg.172]

Free-radical copolymerizations have been performed ia bulb (comonomers without solvent), solution (comonomers with solvent), suspension (comonomer droplets suspended ia water), and emulsion (comonomer emulsified ia water). On the other hand, most ionic and coordination copolymerizations have been carried out either ia bulb or solution, because water acts as a poison for many ionic and coordination catalysts. Similarly, few condensation copolymerizations iavolve emulsion or suspension processes. The foUowiag reactions exemplify the various copolymerization mechanisms. [Pg.179]

Linear polyethylene (high density) was introduced in the late 1950s, with the development of coordination catalysts. Chlorosulfonation of these base resins gave products that were superior to the eadier, low density types in both chemical resistance and mechanical properties and with distinct advantages in mbber processibiUty (6,7). [Pg.490]

CSM products may be divided into three groups depending on the type of precursor resin low density (LDPE), high density (HDPE), and linear low density (LLDPE). LDPE is made by a high pressure free-radical process, while HDPE and LLDPE are made via low pressure, metal coordination catalyst processes (12) (see Olefin polymers). [Pg.490]

When polymerizing dienes for synthetic rubber production, coordination catalysts are used to direct the reaction to yield predominantly 1,4-addition polymers. Chapter 11 discusses addition polymerization. The following reviews some of the physical and chemical properties of butadiene and isoprene. [Pg.36]

Ethylene reacts by addition to many inexpensive reagents such as water, chlorine, hydrogen chloride, and oxygen to produce valuable chemicals. It can be initiated by free radicals or by coordination catalysts to produce polyethylene, the largest-volume thermoplastic polymer. It can also be copolymerized with other olefins producing polymers with improved properties. Eor example, when ethylene is polymerized with propylene, a thermoplastic elastomer is obtained. Eigure 7-1 illustrates the most important chemicals based on ethylene. [Pg.188]

A monomer is a reactive molecule that has at least one functional group (e.g. -OH, -COOH, -NH2, -C=C-). Monomers may add to themselves as in the case of ethylene or may react with other monomers having different functionalities. A monomer initiated or catalyzed with a specific catalyst polymerizes and forms a macromolecule—a polymer. For example, ethylene polymerized in presence of a coordination catalyst produces a linear homopolymer (linear polyethylene) ... [Pg.302]

A new generation coordination catalysts are metallocenes. The chiral form of metallocene produces isotactic polypropylene, whereas the achiral form produces atactic polypropylene. As the ligands rotate, the catalyst produces alternating blocks of isotactic and atactic polymer much like a miniature sewing machine which switches back and forth between two different kinds of stitches. [Pg.312]

The ring opening of cycloolefins is also possible with certain coordination catalysts. This simplified example shows cyclopentene undergoing a first-step formation of the dimer cyclodecadiene, and then incorporating additional cyclopentene monomer units to produce the solid, rubbery polypentamer ... [Pg.315]

Polystyrene (PS) is the fourth big-volume thermoplastic. Styrene can be polymerized alone or copolymerized with other monomers. It can be polymerized by free radical initiators or using coordination catalysts. Recent work using group 4 metallocene combined with methylalumi-noxane produce stereoregular polymer. When homogeneous titanium catalyst is used, the polymer was predominantly syndiotactic. The heterogeneous titanium catalyst gave predominantly the isotactic. Copolymers with butadiene in a ratio of approximately 1 3 produces SBR, the most important synthetic rubber. [Pg.334]

Butadiene could be polymerized using free radical initiators or ionic or coordination catalysts. When butadiene is polymerized in emulsion using a free radical initiator such as cumene hydroperoxide, a random polymer is obtained with three isomeric configurations, the 1,4-addition configuration dominating ... [Pg.352]

Polymerization of butadiene using anionic initiators (alkyllithium) in a nonpolar solvent produces a polymer with a high cis configuration. A high cis-polybutadiene is also obtained when coordination catalysts are used. [Pg.352]

Currently, more SBR is produced by copolymerizing the two monomers with anionic or coordination catalysts. The formed copolymer has better mechanical properties and a narrower molecular weight distribution. A random copolymer with ordered sequence can also be made in solution using butyllithium, provided that the two monomers are charged slowly. Block copolymers of butadiene and styrene may be produced in solution using coordination or anionic catalysts. Butadiene polymerizes first until it is consumed, then styrene starts to polymerize. SBR produced by coordinaton catalysts has better tensile strength than that produced by free radical initiators. [Pg.353]

Stereoregular polyisoprene is obtained when Zieglar-Natta catalysts or anionic initiators are used. The most important coordination catalyst is a-TiCls cocatalyzed with aluminum alkyls. The polymerization rate and cis... [Pg.354]

C—X, Cf, X- and C+ fX (see Fig. 2), the solvation energy increasing the driving force of these dissociations. It is possible that a coordination catalyst is not active in the C—X state but only in one or other of the ionized states. Such behavior blurs the distinction between ionic and coordination polymerization. [Pg.162]

In contrast to the fact that cyclic acetals can be polymerized only by cationic initiators, lactones undergo polymerization both cationically and anionically, and therefore a wide variety of initiators including coordinated catalysts can be used. In this section, the polymerization of bicyclic lactones is described, although only a limited number of papers on this subject have been published. [Pg.63]

Polypropylene was not developed until the 1950s when Ziegler and Natta invented coordination catalysts. The structural difference between polyethylene and polypropylene is the methyl group in the propylene unit. Its presence makes a difference because it makes possible three different polymer structures Isotactic, with all methyl groups in the same plane makes the best plastic syndiotactic, in which the methyl groups alternate in the same plane and atactic, with the methyl groups randomly in and out of the plane is soft and rubbery. Polypropylene is used as film and in many structural forms. It is also used as fibers for carpet manufacture and for thermal clothing. [Pg.111]

FIGURE 5 Stepwise synthesis of a triblock copolymer (PCL-PLA-PCL) of PCL and polylactic acid using aluminum coordination catalysts to minimize randomization of the block structure by transesterification. (From Ref. 43.)... [Pg.79]

The hexamine cobalt (II) complex is used as a coordinative catalyst, which can coordinate NO to form a nitrosyl ammine cobalt complex, and O2 to form a u -peroxo binuclear bridge complex with an oxidability equal to hydrogen peroxide, thus catalyze oxidation of NO by O2 in ammoniac aqueous solution. Experimental results under typical coal combusted flue gas treatment conditions on a laboratory packed absorber- regenerator setup show a NO removal of more than 85% can be maitained constant. [Pg.229]

In order to enhance the activity of coordination catalysts we typically add a cocatalyst. The cocatalyst works synergistically with the catalyst to allow us to tailor the tacticity and molecular weight of the product while also enhancing the rate of the reaction. An example of a commercially used cocatalyst is methylaluminoxane used in conjunction with metallocene catalysts. [Pg.49]

Name the two principal types of coordination catalyst. Describe their general characteristics. [Pg.61]

We make polyethylene resins using two basic types of chain growth reaction free radical polymerization and coordination catalysis. We use free radical polymerization to make low density polyethylene, ethylene-vinyl ester copolymers, and the ethylene-acrylic acid copolymer precursors for ethylene ionomers. We employ coordination catalysts to make high density polyethylene, linear low density polyethylene, and very low density polyethylene. [Pg.288]

Coordination catalysts contain a metal atom that is activated by a variety of electron-withdrawing species that are attached to it. Coordination catalysts for polyethylene fall into three main categories ... [Pg.291]


See other pages where Catalyst coordination is mentioned: [Pg.1083]    [Pg.465]    [Pg.466]    [Pg.467]    [Pg.349]    [Pg.352]    [Pg.327]    [Pg.301]    [Pg.335]    [Pg.161]    [Pg.162]    [Pg.85]    [Pg.44]    [Pg.202]    [Pg.203]    [Pg.875]    [Pg.13]    [Pg.107]    [Pg.48]    [Pg.49]    [Pg.331]    [Pg.150]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.430 , Pg.449 ]

See also in sourсe #XX -- [ Pg.105 , Pg.147 ]

See also in sourсe #XX -- [ Pg.46 ]

See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.43 ]

See also in sourсe #XX -- [ Pg.59 ]

See also in sourсe #XX -- [ Pg.165 ]

See also in sourсe #XX -- [ Pg.101 ]

See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.101 ]




SEARCH



Catalysts coordinated catalyst

© 2019 chempedia.info