Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling parallel

Bar-Cohen, A. and Rohsenow, W.M.. "Thermally Optimum Spacing of Vertical Natural Convection Cooled, Parallel Plates , J. Heat Transfer, Vol. 106. p. 116. 1984. [Pg.422]

Optimuiii Spacing of Vertical Natural Convection Cooled Parallel Plates. Journal of Heat Transfer 106 (1984),... [Pg.561]

In multiple-cavity molds, series and parallel cooling circuits are used. Series cooling enters and cools one cavity, then moves to the next until all the cavities are cooled. The temperature of the water increases as it moves through the mold, and this results in non-uniform cooling. Parallel cooling, on the other hand, enters and exists all cavities simultaneously, thereby cooling all cavities at a uniform rate. Parallel cooling is thus the preferred method but it is not always possible due to limitations. [Pg.191]

Extrusion Processes. Polymer solutions are converted into fibers by extmsion. The dry-extmsion process, also called dry spinning, is primarily used for acetate and triacetate. In this operation, a solution of polymer in a volatile solvent is forced through a number of parallel orifices (spinneret) into a cabinet of warm air the fibers are formed by evaporation of the solvent. In wet extmsion, a polymer solution is forced through a spinneret into a Hquid that coagulates the filaments and removes the solvent. In melt extmsion, molten polymer is forced through a multihole die (pack) into air, which cools the strands into filaments. [Pg.296]

A numerical study of the effect of area ratio on the flow distribution in parallel flow manifolds used in a Hquid cooling module for electronic packaging demonstrate the useflilness of such a computational fluid dynamic code. The manifolds have rectangular headers and channels divided with thin baffles, as shown in Figure 12. Because the flow is laminar in small heat exchangers designed for electronic packaging or biochemical process, the inlet Reynolds numbers of 5, 50, and 250 were used for three different area ratio cases, ie, AR = 4, 8, and 16. [Pg.497]

The manufacture of silver nitrate for the preparation of photographic emulsions requires silver of very high purity. At the Eastman Kodak Company, the principal U.S. producer of silver nitrate, 99.95% pure silver bars are dissolved in 67% nitric acid in three tanks coimected in parallel. Excess nitric acid is removed from the resulting solution, which contains 60—65% silver nitrate, and the solution is filtered. This solution is evaporated until its silver nitrate concentration is 84%. It is then cooled to prepare the first crop of crystals. The mother Hquor is purified by the addition of silver oxide and returned to the initial stages of the process. The cmde silver nitrate is centrifuged and recrystallized from hot, demineralized water. Equipment used in this process is made of ANSI 310 stainless steel (16). [Pg.89]

A nonaHoyed carbon steel having 0.76% carbon, the eutectoid composition, consists of austenite above its lowest stable temperature, 727°C (the eutectoid temperature). On reasonably slow cooling from above 727°C, transformation of the austenite occurs above about 550°C to a series of parallel plates of a plus cementite known as peadite. The spacing of these plates depends on the temperature of transformation, from 1000 to 2000 nm at about 700°C and below 100 nm at 550°C. The corresponding BrineU hardnesses (BHN), which correspond approximately to tensile strengths, are about BHN... [Pg.385]

Parallel flow, suction in center Series flow, one cooling point... [Pg.926]

Cascade coolers are a series of standard pipes, usually manifolded in parallel, and connected in series by vertically or horizontally oriented U-bends. Process fluid flows inside the pipe entering at the bottom and water trickles from the top downward over the external pipe surface. The water is collected from a trough under the pipe sections, cooled, and recirculated over the pipe sections. The pipe material can be any of the metallic and also glass, impeiMous graphite, and ceramics. The tubeside coefficient and pressure drop is as in any circular duct. The water coefficient (with Re number less than 2100) is calculated from the following equation by W.H. McAdams, TB. Drew, and G.S. Bays Jr., from the ASME trans. 62, 627-631 (1940). [Pg.1087]

Figure 12-12 illustrates water and air relationships and the driving potential which exist in a counterflow tower, where air flows parallel but opposite in direction to water flow. An understanding of this diagram is important in visualizing the cooling-tower process. [Pg.1162]

FIG, 12-18 Parallel-path cooling-tower arrangement for plume abatement. (Marley Co.)... [Pg.1166]

Anodic protection today allows safe and efficient protection of air coolers and banks of tubes in sulfuric acid plants. In 1966 the air cooler in a sulfuric acid plant in Germany was anodically protected. Since then more than 10,000 m of cooling surfaces in air- and water-cooled sulfuric acid plants worldwide have been protected. The dc output supply of the potentiostats amounts to >25 kW, corresponding to an energy requirement of 2.5 W per m of protected surface. As an example. Fig. 21-9 shows two parallel-connected sulfuric acid smooth tube exchangers in a production plant in Spain. [Pg.478]

The majority of the oil flows out of the uncontaminated seal oil drain after taking a pressure drop from design seal oil pressure to atmospheric pressure across the breakdown bushing. An orifice is placed in parallel with the breakdown bushing to meter the proper amount of oil flow for cooling. The contaminated oil leaves through the drain to a degasifier for purification. [Pg.506]


See other pages where Cooling parallel is mentioned: [Pg.186]    [Pg.186]    [Pg.54]    [Pg.334]    [Pg.373]    [Pg.434]    [Pg.200]    [Pg.292]    [Pg.279]    [Pg.354]    [Pg.110]    [Pg.309]    [Pg.496]    [Pg.525]    [Pg.317]    [Pg.499]    [Pg.260]    [Pg.156]    [Pg.384]    [Pg.444]    [Pg.514]    [Pg.274]    [Pg.456]    [Pg.1048]    [Pg.1091]    [Pg.1162]    [Pg.1163]    [Pg.1164]    [Pg.1166]    [Pg.39]    [Pg.878]    [Pg.233]    [Pg.259]    [Pg.445]    [Pg.452]   
See also in sourсe #XX -- [ Pg.234 ]




SEARCH



© 2024 chempedia.info