Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cooling adsorption

Drying is an operation in which volatile Hquids are separated by vaporization from soHds, slurries, and solutions to yield soHd products. In dehydration, vegetable and animal materials are dried to less than their natural moisture contents, or water of crystallization is removed from hydrates. In freeze drying (lyophilization), wet material is cooled to freeze the Hquid vaporization occurs by sublimation. Gas drying is the separation of condensable vapors from noncondensable gases by cooling, adsorption (qv), or absorption (qv) (see also Adsorption, gas separation). Evaporation (qv) differs from drying in that feed and product are both pumpable fluids. [Pg.237]

Dehydration can be performed by a number of methods cooling, absorption and adsorption. Water removal by cooling is simply a condensation process at lower temperatures the gas can hold less water vapour. This method of dehydration is often used when gas has to be cooled to recover heavy hydrocarbons. Inhibitors such as glycol may have to be injected upstream of the chillers to prevent hydrate formation. [Pg.250]

Fig. XVII-5. Schematic detector response in a determination of nitrogen adsorption and desorption. A flow of He and N2 is passed through the sample until the detector reading is constant the sample is then cooled in a liquid nitrogen bath. For desorption, the bath is removed. (From Ref. 28. Reprinted with permission from John Wiley Sons, copyright 1995.)... Fig. XVII-5. Schematic detector response in a determination of nitrogen adsorption and desorption. A flow of He and N2 is passed through the sample until the detector reading is constant the sample is then cooled in a liquid nitrogen bath. For desorption, the bath is removed. (From Ref. 28. Reprinted with permission from John Wiley Sons, copyright 1995.)...
Rate effects may not be chemical kinetic ones. Benson and co-worker [84], in a study of the rate of adsorption of water on lyophilized proteins, comment that the empirical rates of adsorption were very markedly complicated by the fact that the samples were appreciably heated by the heat evolved on adsorption. In fact, it appeared that the actual adsorption rates were very fast and that the time dependence of the adsorbate pressure above the adsorbent was simply due to the time variation of the temperature of the sample as it cooled after the initial heating when adsorbate was first introduced. [Pg.661]

Adsorbates can physisorb onto a surface into a shallow potential well, typically 0.25 eV or less [25]. In physisorption, or physical adsorption, the electronic structure of the system is barely perturbed by the interaction, and the physisorbed species are held onto a surface by weak van der Waals forces. This attractive force is due to charge fiuctuations in the surface and adsorbed molecules, such as mutually induced dipole moments. Because of the weak nature of this interaction, the equilibrium distance at which physisorbed molecules reside above a surface is relatively large, of the order of 3 A or so. Physisorbed species can be induced to remain adsorbed for a long period of time if the sample temperature is held sufficiently low. Thus, most studies of physisorption are carried out with the sample cooled by liquid nitrogen or helium. [Pg.294]

Steps. Thermal-swing cycles have at least two steps, adsorption and heating. A cooling step is also normally used after the heating step. A portion of the feed or product stream can be utilized for heating, or an independent fluid can be used. Easily condensable contaminants may be regenerated with noncondensable gases and recovered by condensation. Water-iminiscible solvents are stripped with steam, which may be condensed and separated from the solvent by decantation. Fuel and/or air may be used when the impurities are to be burned or incinerated. [Pg.279]

A recently developed drying appHcation for zeoHtes is the prevention of corrosion in mufflers (52,55). Internal corrosion in mufflers is caused primarily by the condensation of water and acid as the system cools. A unique UOP zeoHte adsorption system takes advantage of the natural thermal cycling of an automotive exhaust system to desorb the water and acid precursors. [Pg.280]

Adsorption (qv) of gases has been reviewed (40,50) (see also Adsorption, gas separation). Adsorption, used alone or in combination with other removal methods, is excellent for removing pollutant gases to extremely low concentrations, eg, 1 ppmv. When used in combination, it is typically the final step. Adsorption, always exothermic, is even more attractive when very large gas volumes must be made almost pollutant free. Because granular adsorbent beds ate difficult to cool because of poor heat transfer, gas precooling is often practiced to minimize adsorption capacity loss toward the end of the bed. Pretreatment to remove or reduce adsorbable molecules, such as water, competing for adsorption sites should also be considered (41). [Pg.387]

Compounds having low vapor pressures at room temperature are treated in water-cooled or air-cooled condensers, but more volatile materials often requite two-stage condensation, usually water cooling followed by refrigeration. Minimising noncondensable gases reduces the need to cool to extremely low dew points. Partial condensation may suffice if the carrier gas can be recycled to the process. Condensation can be especially helpful for primary recovery before another method such as adsorption or gas incineration. Both surface condensers, often of the finned coil type, and direct-contact condensers are used. Direct-contact condensers usually atomize a cooled, recirculated, low vapor pressure Hquid such as water into the gas. The recycle hquid is often cooled in an external exchanger. [Pg.389]

Natural gas Hquids are recovered from natural gas using condensation processes, absorption (qv) processes employing hydrocarbon Hquids similar to gasoline or kerosene as the absorber oil, or soHd-bed adsorption (qv) processes using adsorbants such as siHca, molecular sieves, or activated charcoal. Eor condensation processes, cooling can be provided by refrigeration units which frequently use vapor-compression cycles with propane as the refrigerant or by... [Pg.171]

Solid-Bed Dehydration. Sihca gel, bauxite, activated alurnina, or molecular sieves can be used for removing dissolved water to meet propane specifications. The soHd-bed dehydrators are used in a cycHc adsorption process. After an adsorption cycle has completed, the bed is heated with a purge gas or a vaporized Hquid-product stream for regeneration. If the latter is used, the Hquid product is condensed, separated from the free water, and returned to the process. After the beds are regenerated, they are cooled and returned to the adsorption cycle. [Pg.185]

Many units have waste heat recovery systems that generate low pressure steam from reaction heat. Such steam is often employed to drive adsorption refrigeration units to cool the reactor feed stream and to increase polymer conversion per pass, an energy-saving process that reduces the demand for electrical power. [Pg.373]

Silicates. For many years, siUcates have been used to inhibit aqueous corrosion, particularly in potable water systems. Probably due to the complexity of siUcate chemistry, their mechanism of inhibition has not yet been firmly estabUshed. They are nonoxidizing and require oxygen to inhibit corrosion, so they are not passivators in the classical sense. Yet they do not form visible precipitates on the metal surface. They appear to inhibit by an adsorption mechanism. It is thought that siUca and iron corrosion products interact. However, recent work indicates that this interaction may not be necessary. SiUcates are slow-acting inhibitors in some cases, 2 or 3 weeks may be required to estabUsh protection fully. It is beheved that the polysiUcate ions or coUoidal siUca are the active species and these are formed slowly from monosilicic acid, which is the predorninant species in water at the pH levels maintained in cooling systems. [Pg.270]

The overhead temperatures of both the absorber and stripper are kept as low as possible to minimise solvent carryover. A temperature of about 311 K is typically used ia the high pressure absorber. The overhead temperature ia the stripper is set by the boiling poiat of the saturated complex solution and by the operating pressure of the stripper. At a stripping pressure of 0.166 MPa (1.7 atm), a temperature of 378 Kis used. The solvent-rich gas from the stripper is cooled to recover as much solvent as possible by condensation prior to the final aromatics-recovery section. Fiaal solvent recovery is accomphshed by adsorption on activated carbon (95). [Pg.58]

Product Recovery. The aHyl chloride product is recovered through the use of several fractional distillation steps. Typically, the reactor effluent is cooled and conducted into an initial fractionator to separate the HCl and propylene from the chloropropenes, dichloropropanes, dichloropropenes, and heavier compounds. The unconverted propylene is recycled after removal of HCl, which can be accompHshed by adsorption in water or fractional distillation (33,37,38) depending on its intended use. The crude aHyl chloride mixture from the initial fractionator is then subjected to a lights and heavies distillation the lighter (than aHyl chloride) compounds such as 2-chloropropene, 1-chloropropene, and 2-chloropropane being the overhead product of the first column. AHyl chloride is then separated in the second purification column as an overhead product. Product purities can exceed 99.0% and commercial-grade aHyl chloride is typicaHy sold in the United States in purities about 99.5%. [Pg.34]


See other pages where Cooling adsorption is mentioned: [Pg.288]    [Pg.263]    [Pg.211]    [Pg.288]    [Pg.263]    [Pg.211]    [Pg.255]    [Pg.601]    [Pg.662]    [Pg.88]    [Pg.419]    [Pg.279]    [Pg.279]    [Pg.279]    [Pg.279]    [Pg.280]    [Pg.281]    [Pg.283]    [Pg.287]    [Pg.287]    [Pg.11]    [Pg.402]    [Pg.419]    [Pg.421]    [Pg.423]    [Pg.446]    [Pg.184]    [Pg.520]    [Pg.477]    [Pg.75]    [Pg.477]    [Pg.162]    [Pg.300]    [Pg.480]    [Pg.103]    [Pg.479]    [Pg.417]    [Pg.292]    [Pg.312]   
See also in sourсe #XX -- [ Pg.304 ]




SEARCH



© 2024 chempedia.info